Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F P Q M I R N H O
a) Chứng minh MNRQ là hình chữ nhật
Áp dụng tính chất đường trung bình:
+) \(\Delta\)ABC => MN //= \(\frac{1}{2}\) BC
+) \(\Delta\)HBC => QR //= \(\frac{1}{2}\) BC (1)
=> MN//= QR
=> MNQR là hình bình hành (2)
Xét \(\Delta\) ACH có NR là đường trung bình => NR //AH => NR //AD (3)
Từ (1) ; ( 3) và AD vuông góc BC
=> NR vuông góc RQ (4)
Từ (2) ; (4) => MNQR là hình chữ nhật
b) MPRI là hình bình hành
Áp dụng tính chất đường trung bình
+) \(\Delta\)ABC => MI //= \(\frac{1}{2}\) AC
+) \(\Delta\)AHC => PR //= \(\frac{1}{2}\) AC
=> MI //= PR
=> MPRI là hình bình hành
Tương tự câu a cũng chứng minh đc MP vuông PR
=> MPRI là hình chữ nhật
b) MNRQ là hình chữ nhật
có O là trung điểm MR
=> OM =ON =OR = OQ
MPRI là hình chữ nhật
=> OM = OP = OR = OI
=> OM =ON =OR = OQ = OP = OI
=> Q: M; P; N; N ; R; I thuộc đường tròn tâm O
c) Xét các \(\Delta\)NEQ ; \(\Delta\) R FM ; \(\Delta\)PDI lần lượt vuông tại E; F; D tương ứng vs các cạnh huyền NQ; RM; PI
Các cạnh huyền đều có trung điểm là O ( câu b )
=> ON = OE = OQ
OR = OF= OM
OP= OD = OI
=> D; E; F thuộc đường tròn O.
Trong tam giác ABH có PK là đường trung bình nên PK//AH và \(PK=\frac{1}{2}AH\)
Trong tam giác ACH có NR là đường trung bình nên NR//AH và \(NR=\frac{1}{2}AH\)
Do đó PK//NR và PK=NR nên PNRK là hình bình hành
Mặt khác PK//AH mà AH _|_ BC => PK _|_ BC
Lại có PN //BC (do PN là đường trung bình tam giác ABC)
=> PN _|_ PK, do đó PNRK là hình chữ nhật
Gọi S là giao của PR và NK thì SP=SN=SK=SR
Chứng minh tương tự có IS=SM=SN=SK
Tam giác FPR vuông tại F có S là trung điểm PR nên SF=SP=SR
Tương tự cũng có SE=SK=SN; SD=SI=SM
=> SD=SE=SF=SM=SN=SP=SI=SK=SR
Vậy 9 điểm I,K,R,M,N,P,D,E,F cùng thuộc 1 đường tròn tâm I
Đường tròn đi qua 9 điểm được gọi là đường tròn Euler của tam giác ABC
A B C O H P E F D M N I K R Q
a) - Xét tam giác ABH có: P; K là trung điểm của AB; BH => PK là đường trung bình của tam giác => PK // AH và PK = AH/ 2
Có AH // OM (cùng vuông góc với BC) => PK // OM
- xét tam giác BHC có: M; K là Trung điểm của BC; BH => MK là đường trung bình của tam giác => MK // CH
mà CH // OP nên MK // OP. Lại có PK // Om nên t/g OPKM là hbh => PK = OM . PK = AH/ 2 => OM = AH/ 2
ta có: IH = AH/ 2 => IH = OM ; IH // OM => T/g IOMH là hbh => hai đường chéo IM ; OH cắt nhau tại trung điểm Q của mỗi đường
b) - Tam giác IDM vuông tại D có: DQ là trung tuyến => QD = QI = QM = IM / 2
- T/g AOMI là hbh (vì OM = AI ; OM // AI) => OA = IM
=> QD = QI = QM = OA/ 2
c) Tương tự, câu a: chứng minh được Q là trung điểm của KN và RP
=> Kết quả tương tự câu b: QK = QN = QE = OB/ 2
QP = QR = QF = OC/2