K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018
giúp mk nhé
1 tháng 2 2018

ABCDEMNEFIa,Ta có ΔABC cân ở góc A => góc ABC=góc ACB =180(đ)BAC2(1)

Ta có BD=CE(gt);AB=AC(gt)

mà AB+BD=AD và AC+CE=AE

=> AD=AE

=>ΔADE cân tại A ( Có hai góc bằng nhau)

=>góc ADE= góc AED=(180 độ - DAE) :2 (2)

Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED

mà góc ABC và góc ADE ở vị trí đồng vị

=>BC // DE(đpcm)

b)ta có góc ABC= góc MBD (đối đỉnh )

góc ACB= góc NCE( đối đỉnh )

mà Góc ABC=Góc ACB => góc MBD= góc NCE

Xét hai tam giác vuông ΔBMD và ΔCNE

có BD=CE (gt)

góc MBD= góc NCE (c/m trên)

=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)

=> DM=EN(Hai cạnh tương ứng)

c) Gọi giao điểm của AM và BI là E

giao điểm của AN và CI là F

Vì ΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)

Ta có : Góc ABC= Góc ACB ( gt)

mà Góc ABC + Góc ABM=180 độ ( kề bù)

và Góc ACB+góc ACN= 180 độ ( kề bù)

=>Góc ABM=góc ACN

Xét ΔABM VÀ ΔACN có:

AB=AC(gt)

Góc ABM=Góc ACN(cmt)

BM=CM ( cmt)

=> ΔABM=ΔACN(cgc)

=> Góc AMB=Góc ANC (hai góc tương ứng )

=> ΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)

D,(hơi dài )

ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)

Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:

Góc EMB=góc FNC (cmt)

MB=CN(cmt)

=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)

=>EM=FN(hai cạnh tương ứng ) (4)

Ta có (3) (4) mà AE+EM=AM và AF+FN=AN

=> AE=AF

Xét hai tam giác vuông tam giác AEI và tam giác AFI có

AI cạnh chung

AE=AF(cmt)

=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)

=>Góc AIE=Góc AIF( góc tương ứng ) (10)

ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)

góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)

mà góc EBM= góc FCN (cmt)(7)

góc MDB=góc NCE(gt) (8)

từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)

từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)

Chúc bạn học giỏi nha Thiên Yết >.<

12 tháng 10 2021

Cho t/giác ABC cân tại A. Trên cạnh AB lấy điểm E. Trên tia đối của tia CA lấy điểm F sao cho CF=BE. Vẽ tia Bx vuông góc AB & Cy vuông góc AC. Gọi I là giao điểm của Bx và Cy

a, C/m t/giác IEF cân 

b, Vẽ qua E đường thẳng song song với BC cắt AC tại D. C/m CD=CF

c, Gọi H là Giao điểm của EF và BC. C/m E, F đối xứng qua IH

Câu a ,b mình biết làm rồi còn câu c nữa thôi. SIN LOI MINH KO BIET LAM

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC