K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2023

Đặt \(\left\{{}\begin{matrix}BD=x\\CD=y\end{matrix}\right.\) với x;y là các số nguyên dương

Áp dụng định lý phân giác:

\(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{x}{35}=\dfrac{y}{50}\Rightarrow y=\dfrac{10x}{7}\)

Do \(y\) nguyên và 10;7 nguyên tố cùng nhau \(\Rightarrow x\) chia hết cho7

Mặt khác theo BĐT tam giác:

\(BC< AB+AC\Rightarrow x+y< 85\)

\(\Rightarrow x+\dfrac{10x}{7}< 85\Rightarrow x< 35\)

BC lớn nhất khi x lớn nhất, số nguyên chia hết cho 7 và nhỏ hơn 35 lớn nhất là 28

Vậy \(x_{max}=28\Rightarrow BC_{max}=28+\dfrac{10.28}{7}=68\)

4 tháng 6 2020

a)Xét ΔHAB và ΔABC  {AHBˆ=ABCˆCABˆ:chung  ⇒ΔAHB∼ΔABC(g−g)  b)Xét ΔABC ta có:  BC2=AC2+AB2  BC2=162+122  BC2=400  BC=400−−−√=20cm  Ta có ΔHAB~ΔABC(câu a)  ⇒AHAC=ABBC⇔AH16=1220  ⇒AH=12.1620=9,6cm  Xét ΔHBA ta được:  AH2+BH2=AB2  BH2=AB2−AH2  BH2=122−9,62  BH2=51,84  ⇒BH=51,84−−−−−√=7,2cm  c)Vì AD là đường phân giác của ΔABC nên:  ABBD=ACCD⇔ABBC−CD=ACCD  ⇔AB.CDCD.(BC−CD)=AC.(BC−CD)CD.(BC−CD)  ⇔AB.CD=AC.(BC−CD)   ⇔12.CD=16.20−16.CD  ⇔12.CD+16.CD=320  ⇔28.CD=320  ⇔CD=32028≈11.43(cm)  Độ dài cạnh BC là:  BD=BC-CD  BD=20−32028≈8,57(cm)

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:A. BD = 20/7 cm; CD = 15/7cm. B. BD = 15/7 cm; CD = 20/7 cmC. BD = 1,5 cm; CD = 2,5 cmD. BD = 2,5 cm; CD = 1,5 cmBài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:A. DA = 8/3 ; DC = 10/3B. DA = 10/3; DC = 8/3C. DA = 4; DC = 2D. DA = 2,5; DC = 2,5Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:

A. BD = 20/7 cm; CD = 15/7cm. 

B. BD = 15/7 cm; CD = 20/7 cm

C. BD = 1,5 cm; CD = 2,5 cm

D. BD = 2,5 cm; CD = 1,5 cm

Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:

A. DA = 8/3 ; DC = 10/3

B. DA = 10/3; DC = 8/3

C. DA = 4; DC = 2

D. DA = 2,5; DC = 2,5

Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:

A. 1/AB + 1/AC = 2/AD

B. 1/AD + 1/AC = 1/AB

C. 1/ AB + 1/AC = 1/AD

D. 1/AB + 1/AC = 1

Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :

A. x = 14

B. x = 12

C. x = 8

D. Một kết quả khác

Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :

A.10

B.10_5/7

C.14

D.14_2/7

Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:

A. 1/4

B. 1/2

C. 3/4

D.1/3

Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:

A. 3,5

B.5

C. 40/7

D.6

Bài 8: 

Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:

A.  ME//AC

B. góc AEF = 50°

C. Góc FMC = 50°

D. MB/MA= FA/FC

Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc: 

A. DA = 3cm

B. DB = 5cm

C. AC = 6cm

D. Cả 3 đều đúng

   😨😨 Lm ơn giúp mk lm đc ko thời hạn là trc 7h sáng ngày 7/4 cảm ơn các bn nhiều lm

1
7 tháng 4 2020

Bài 1:Cho tam giác ABC vuông tại A có AB = 3cm ; BC = 5cm . AD là đg phân giác của tam giác ABC .  có:

A. BD = 20/7 cm; CD = 15/7cm. 

B. BD = 15/7 cm; CD = 20/7 cm

C. BD = 1,5 cm; CD = 2,5 cm

D. BD = 2,5 cm; CD = 1,5 cm

Bài 2: Cho tâm giác ABC có BD là đg phân giác , AB = 8cm , BC = 10cm , CA = 6cm . Ta có:

A. DA = 8/3 ; DC = 10/3

B. DA = 10/3; DC = 8/3

C. DA = 4; DC = 2

D. DA = 2,5; DC = 2,5

Bài 3: Cho tâm giác ABC có góc A là 120, AD là đg phân giác. Chứng minh đc rằng:

A. 1/AB + 1/AC = 2/AD

B. 1/AD + 1/AC = 1/AB

C. 1/ AB + 1/AC = 1/AD

D. 1/AB + 1/AC = 1

Bài 4: Cho tâm giác ABC . Tia phân giác trong của góc A cắt BC tại D . Cho AB = 6, AC = x , BD = 9, BC = 21. Hãy chọn kết quả đúng về độ dài x :

A. x = 14

B. x = 12

C. x = 8

D. Một kết quả khác

Bài 5: Tâm giác ABC có cạnh AB = 15 cm , AC = 20cm, BC = 25cm. Đg phân giác của góc BAC cắt cạnh BC tại D. Vậy độ dài DB là :

A.10

B.10_5/7

C.14

D.14_2/7

Bài 6: Tam giác ABC có cạnh AB bằng 15cm, AC = 20cm, BC = 25cm. Đg phân giác góc BAC cắt BC tại D. Vậy tỉ số diện tích của 2 tâm giác ABD và ACD là:

A. 1/4

B. 1/2

C. 3/4

D.1/3

Bài 7: Độ dài các cạnh tâm giác BAC tỉ lệ với 2:3:4 BD là tâm giác trong ứng với cạnh ngắn nhất AC, chia AC thành 2 đoạn AD và CD . nếu độ dài là 10, thế thì độ dài của đoạn thẳng dài hơn trong 2 đoạn AD và CD là:

A. 3,5

B.5

C. 40/7

D.6

Bài 8: 

Cho tam giác ABC có góc B = 50 , M là trung điểm của BC . Tia phân giác của góc AMB cắt AB tại E . Tia phân giác của góc AMC cắt AC tại F. Phát biêủ nào sau đây là đúng:

A.  ME//AC

B. góc AEF = 50°

C. Góc FMC = 50°

D. MB/MA= FA/FC

Bài 9: Cho tam giác ABC vuông tại A có AB= 8cm , BC = 10cm , CD là đg phân giác. Ta chứng tỏ đc: 

A. DA = 3cm

B. DB = 5cm

C. AC = 6cm

D. Cả 3 đều đúng

9 tháng 6 2017

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:

B C 2 = A B 2 + A C 2 = a 2 + b 2

Suy ra:Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: AM = BM = 1/2.BC (tính chất đường trung tuyến ứng với cạnh huyền).

Suy ra: AM = 1/2 a 2 + b 2

Vì AD là đường phân giác của ∠(BAC) nên:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (tính chất đường phân giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

hay Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

4 tháng 5 2015

1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng

=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600

=> tg AMI đều => AM = AI = 1/2AN

Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)

Từ (1) và (2) bn suy ra nhé

26 tháng 4 2019

1b) Tam giác AMN vuông tại M có góc A = 60o

Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng

=> SAMD/SNMA  = (AM/MN)2 = AM2 /MN2 (1)

Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o

=> tg AMI đều => AM = AI = 1/2AN

Từ (1) và (2) bn suy ra nhé

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0
13 tháng 3 2020

Trong ΔABC, ta có: AD là đường phân giác của (BAC)

Suy ra: \(\frac{DB}{DC}=\frac{AB}{AC}\)(tính chất đường phân giác)

Mà AB = 15 (cm); AC = 20 (cm)

Nên \(\frac{DB}{DC}=\frac{15}{20}\)

uy ra: \(\frac{DB}{DB+DC}=\frac{15}{15+20}\)(tính chất tỉ lệ thức)

Suy ra: \(\frac{DB}{BC}=\frac{15}{35}\Rightarrow DB=\frac{15}{35}.BC=\frac{15}{35}.25=\frac{75}{7}cm\)

\(\Rightarrow DC=BC-BD=25-\frac{75}{7}=\frac{100}{7}cm\)

b. Kẻ AH ⊥ BC

Ta có: SABD = 1/2 AH.BD; SADC = 1/2 AH.DC

Suy ra :\(\frac{S_{ABD}}{S_{ADC}}=\frac{\frac{1}{2}AH.BD}{\frac{1}{2}AH.DC}=\frac{BD}{DC}\)

\(\frac{DB}{DC}=\frac{15}{20}=\frac{3}{4}\)

\(\Rightarrow\frac{S_{ABD}}{S_{ADC}}=\frac{3}{4}\)