K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2017

a)

Xét \(\Delta ANM;\Delta CNE\) có :

\(AN=NC\left(gt\right)\\ \widehat{ANM}=\widehat{CNE}\left(đ^2\right)\\ NM=NE\left(gt\right)\\ \Rightarrow\Delta ANM=\Delta CNE\left(c-g-c\right)\\ \Rightarrow AM=CE;\widehat{A}=\widehat{NCE}\)

AM=CE => BM=CE

\(\widehat{A}=\widehat{NCE}\\ \)

=> CE // AB

=> CE // MB

b)

Xét \(\Delta ANE;\Delta CNM\) có :

\(NA=NC\left(gt\right)\\ \widehat{ANE}=\widehat{CNM}\left(đ^2\right)\\ NE=NM\left(gt\right)\\ \Rightarrow\Delta ANE=\Delta CNM\left(c-g-c\right)\\ \Rightarrow AE=CM\)

\(AB=AC\\ \Rightarrow\dfrac{AB}{2}=\dfrac{AC}{2}\\ \Rightarrow BM=CN\)

Xét \(\Delta BCM;\Delta CBN\) có :

\(BM=CN\left(gt\right)\\ \widehat{ABC}=\widehat{ACB}\left(gt\right)\\ BC\left(chung\right)\\ \Rightarrow\Delta BCM=\Delta CBN\left(c-g-c\right)\\ \Rightarrow MC=BN\)

Xét tam giác ADC ; B là trung điểm AD ; N là trung điểm AC

=> BN là đường trung bình tam giác ADC

\(\Rightarrow BN=\dfrac{1}{2}CD\\ \Rightarrow AE=\dfrac{CD}{2}\)

29 tháng 12 2017

ngon

9 tháng 1 2018

A B C E N M D

b) Xét \(\Delta ANE\)\(\Delta CNM\) có :

\(AN=NC\left(gt\right)\)

\(\widehat{ANE}=\widehat{CNM}\) (đối đỉnh)

\(EN=NM\left(gt\right)\)

=> \(\Delta ANE\) = \(\Delta CNM\) (c.g.c)

=> \(AE=CM\) (2 cạnh tương ứng)

Mà theo giả thiết ta có :

\(AB=AC\)

=> \(\dfrac{AB}{2}=\dfrac{AC}{2}\)

\(\Rightarrow BN=CM\)

Xét \(\Delta ABN\)\(\Delta AMC\) có :

\(BN=MC\left(cmt\right)\)

\(\widehat{A}:chung\)

\(AB=AC\left(gt\right)\)

=> \(\Delta ABN\) = \(\Delta AMC\) (c.g.c)

=> \(BN=MC\) (2 cạnh tương ứng)

Xét \(\Delta ADC\) có :

\(AB=BD\left(gt\right)\)

\(AN=NC\left(gt\right)\)

=> \(BN\) là đường trung bình trong \(\Delta ADC\)

=> \(BN=\dfrac{1}{2}CD\) (tính chất đường trung bình trong tam giác)

Mà có : \(\left\{{}\begin{matrix}AE=MC\\BN=MC\end{matrix}\right.\)

=> \(BN=AE\left(=MC\right)\)

Do đó : \(AE=\dfrac{1}{2}CD\left(đpcm\right)\)

9 tháng 1 2018

https://hoc24.vn/hoi-dap/question/533940.html

16 tháng 12 2015

a) Xét tam giác ABM và tam giác ACM, ta có:

AB=AC(gt)

BM=CM(gt)

AM: cạnh chung

Do đó:  tam giác ABM = tam giác ACM(c.c.c)

Vậy: Góc AMB = Góc AMC

Mà góc AMB + góc AMC = 180 độ =>

Góc AMB = Góc ACM = 180 độ / 2 = 90 độ

Vậy AM vuông góc với BC

b) Xét tam giác AMD và tam giác AME, ta có:

AD=AE (gt)

Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )

AM: cạnh chung

Do đó: Tam giác AMD = tam giác AME (c.g.c)

c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )

Vậy ba điểm D,E,K thẳng hàng

16 tháng 12 2015

=> tam giác ABC cân tại A

Xét ABM và ACM có:

AM chung

AB = AC

A1 = A2 (tam giác ABC cân tại A)

Vậy tam giác ABM = ACM

M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)

=> M1 = M2 = 90

=> AM vuông góc BC 

 

27 tháng 3 2019

Hình:

A B C M D E

a)Xét tam giác AMB và tam giác CMD:

Có AM=CM(gt) ;AMB=CMD(đói đỉnh);BM=DM(Gt)

=> tam giác AMB=tam giác CMD(c.G.c)

b)Vì tam giác AMB=tam giác CMD

=>BAM=DCM(hai góc tương ứng)

Mà BAM=90 Độ 

=>DCM=90 độ

=>MC vuông góc với CD

mà Ba điểm A,M,C trùng nhau

=>AC vuông góc với CD(ĐPCM)

c) mình không biết cách làm

mong bạn k đúng cho mình nha

18 tháng 2 2016

a)xét \(\Delta AMNva\Delta CNEco\) 

     MN=Ne(gt)

     NA=NC(gt)

    góc ANM=góc CNE(2 góc đđ)

\(\Rightarrow\Delta AMN=\Delta CNE\) (c.g.c)

b)theo câu a, ta có \(\Rightarrow\Delta AMN=\Delta CNE\) \(\Rightarrow AM=EC\) và   AM=MB  \(\Rightarrow\) CE=MB

                                                                                  góc MAN=góc ECN \(\Rightarrow\) AMssCE mà A, M,B thẳng hàng\(\Rightarrow\) MBssEC

c)ta có góc BMC=góc MCE( 2 góc slt)

  xét \(\Delta CEMvà\Delta MBCcó\)

   MB=CE(cmt)

   BMC=MCE(cmt)    \(\Rightarrow\Delta CEM=\Delta MBC\) (c.g.c)

   MC( chung)

d)theo câu c, ta có \(\Rightarrow\Delta CEM=\Delta MBC\) \(\Rightarrow gócNMC=gocsMCB\) \(\Rightarrow MNssBC\)

      ME=BC mà MN bằng 1/2 ME \(\Rightarrow\) MN=1/2BC