Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C E N M D
b) Xét \(\Delta ANE\) và \(\Delta CNM\) có :
\(AN=NC\left(gt\right)\)
\(\widehat{ANE}=\widehat{CNM}\) (đối đỉnh)
\(EN=NM\left(gt\right)\)
=> \(\Delta ANE\) = \(\Delta CNM\) (c.g.c)
=> \(AE=CM\) (2 cạnh tương ứng)
Mà theo giả thiết ta có :
\(AB=AC\)
=> \(\dfrac{AB}{2}=\dfrac{AC}{2}\)
\(\Rightarrow BN=CM\)
Xét \(\Delta ABN\) và \(\Delta AMC\) có :
\(BN=MC\left(cmt\right)\)
\(\widehat{A}:chung\)
\(AB=AC\left(gt\right)\)
=> \(\Delta ABN\) = \(\Delta AMC\) (c.g.c)
=> \(BN=MC\) (2 cạnh tương ứng)
Xét \(\Delta ADC\) có :
\(AB=BD\left(gt\right)\)
\(AN=NC\left(gt\right)\)
=> \(BN\) là đường trung bình trong \(\Delta ADC\)
=> \(BN=\dfrac{1}{2}CD\) (tính chất đường trung bình trong tam giác)
Mà có : \(\left\{{}\begin{matrix}AE=MC\\BN=MC\end{matrix}\right.\)
=> \(BN=AE\left(=MC\right)\)
Do đó : \(AE=\dfrac{1}{2}CD\left(đpcm\right)\)
a) Xét tam giác ABM và tam giác ACM, ta có:
AB=AC(gt)
BM=CM(gt)
AM: cạnh chung
Do đó: tam giác ABM = tam giác ACM(c.c.c)
Vậy: Góc AMB = Góc AMC
Mà góc AMB + góc AMC = 180 độ =>
Góc AMB = Góc ACM = 180 độ / 2 = 90 độ
Vậy AM vuông góc với BC
b) Xét tam giác AMD và tam giác AME, ta có:
AD=AE (gt)
Góc DAM = Góc EAM ( theo câu a, cặp góc tương ứng )
AM: cạnh chung
Do đó: Tam giác AMD = tam giác AME (c.g.c)
c) Ta thấy: Góc EDM + Góc KDM = 180 độ ( kề bù )
Vậy ba điểm D,E,K thẳng hàng
=> tam giác ABC cân tại A
Xét ABM và ACM có:
AM chung
AB = AC
A1 = A2 (tam giác ABC cân tại A)
Vậy tam giác ABM = ACM
M1 = M2 ; M1 + M2 = 180 (2 góc kề bù)
=> M1 = M2 = 90
=> AM vuông góc BC
Hình:
A B C M D E
a)Xét tam giác AMB và tam giác CMD:
Có AM=CM(gt) ;AMB=CMD(đói đỉnh);BM=DM(Gt)
=> tam giác AMB=tam giác CMD(c.G.c)
b)Vì tam giác AMB=tam giác CMD
=>BAM=DCM(hai góc tương ứng)
Mà BAM=90 Độ
=>DCM=90 độ
=>MC vuông góc với CD
mà Ba điểm A,M,C trùng nhau
=>AC vuông góc với CD(ĐPCM)
c) mình không biết cách làm
mong bạn k đúng cho mình nha
a)xét \(\Delta AMNva\Delta CNEco\)
MN=Ne(gt)
NA=NC(gt)
góc ANM=góc CNE(2 góc đđ)
\(\Rightarrow\Delta AMN=\Delta CNE\) (c.g.c)
b)theo câu a, ta có \(\Rightarrow\Delta AMN=\Delta CNE\) \(\Rightarrow AM=EC\) và AM=MB \(\Rightarrow\) CE=MB
góc MAN=góc ECN \(\Rightarrow\) AMssCE mà A, M,B thẳng hàng\(\Rightarrow\) MBssEC
c)ta có góc BMC=góc MCE( 2 góc slt)
xét \(\Delta CEMvà\Delta MBCcó\)
MB=CE(cmt)
BMC=MCE(cmt) \(\Rightarrow\Delta CEM=\Delta MBC\) (c.g.c)
MC( chung)
d)theo câu c, ta có \(\Rightarrow\Delta CEM=\Delta MBC\) \(\Rightarrow gócNMC=gocsMCB\) \(\Rightarrow MNssBC\)
ME=BC mà MN bằng 1/2 ME \(\Rightarrow\) MN=1/2BC
a)
Xét \(\Delta ANM;\Delta CNE\) có :
\(AN=NC\left(gt\right)\\ \widehat{ANM}=\widehat{CNE}\left(đ^2\right)\\ NM=NE\left(gt\right)\\ \Rightarrow\Delta ANM=\Delta CNE\left(c-g-c\right)\\ \Rightarrow AM=CE;\widehat{A}=\widehat{NCE}\)
AM=CE => BM=CE
\(\widehat{A}=\widehat{NCE}\\ \)
=> CE // AB
=> CE // MB
b)
Xét \(\Delta ANE;\Delta CNM\) có :
\(NA=NC\left(gt\right)\\ \widehat{ANE}=\widehat{CNM}\left(đ^2\right)\\ NE=NM\left(gt\right)\\ \Rightarrow\Delta ANE=\Delta CNM\left(c-g-c\right)\\ \Rightarrow AE=CM\)
\(AB=AC\\ \Rightarrow\dfrac{AB}{2}=\dfrac{AC}{2}\\ \Rightarrow BM=CN\)
Xét \(\Delta BCM;\Delta CBN\) có :
\(BM=CN\left(gt\right)\\ \widehat{ABC}=\widehat{ACB}\left(gt\right)\\ BC\left(chung\right)\\ \Rightarrow\Delta BCM=\Delta CBN\left(c-g-c\right)\\ \Rightarrow MC=BN\)
Xét tam giác ADC ; B là trung điểm AD ; N là trung điểm AC
=> BN là đường trung bình tam giác ADC
\(\Rightarrow BN=\dfrac{1}{2}CD\\ \Rightarrow AE=\dfrac{CD}{2}\)
ngon