Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a
\(\left(5\dfrac{7}{9}+2\dfrac{3}{11}\right)-\left(-1\dfrac{8}{11}+3\dfrac{7}{9}\right)\)
= \(5\dfrac{7}{9}+2\dfrac{3}{11}+1\dfrac{8}{11}-3\dfrac{7}{9}\)
= \(\left(5\dfrac{7}{9}-3\dfrac{7}{9}\right)+\left(2\dfrac{3}{11}+1\dfrac{8}{11}\right)\)
= \(2+3\dfrac{11}{11}\)
= \(2+3+1\)
= \(6\)
câu b
\(\left(2\dfrac{7}{19}-3\dfrac{8}{9}\right)-\left(1\dfrac{7}{19}-2\dfrac{1}{9}\right)\)
= \(2\dfrac{7}{19}-3\dfrac{8}{9}-1\dfrac{7}{19}+2\dfrac{1}{9}\)
= \(\left(2\dfrac{7}{19}-1\dfrac{7}{19}\right)-\left(3\dfrac{8}{9}-2\dfrac{1}{9}\right)\)
= \(1-1\dfrac{7}{9}\)
= \(\dfrac{-7}{9}\)
\(\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{20}\right)\cdot\cdot\cdot\left(1+\dfrac{7}{180}\right)=\dfrac{16}{9}\cdot\dfrac{27}{20}\cdot\cdot\cdot\dfrac{187}{180}=\dfrac{2.8}{1\cdot9}\cdot\dfrac{3\cdot9}{2\cdot10}\cdot\cdot\cdot\dfrac{11\cdot17}{10\cdot18}=\dfrac{\left(2\cdot3\cdot...\cdot11\right)\cdot\left(8\cdot9\cdot...\cdot17\right)}{\left(1\cdot2\cdot...\cdot10\right)\cdot\left(9\cdot10\cdot...\cdot18\right)}=\dfrac{11\cdot8}{1\cdot18}=\dfrac{88}{18}=\dfrac{44}{9}\)
Bài 4: 26 \(\dfrac{1}{4}\)= 26, 25 . Quãng đương là 26,25 . 2,4 = 63 km.
Thời gian đi từ B đến A là : 63 : 30 = 2,1 h
\(x:4\dfrac{1}{3}=2,5\\ x:\dfrac{13}{3}=\dfrac{5}{2}\\ x=\dfrac{5}{2}.\dfrac{13}{3}\\ x=\dfrac{65}{6}=10\dfrac{5}{6}\)
\(-2\dfrac{1}{4}.\)\(\left(3\dfrac{5}{12}-1\dfrac{2}{9}\right)\)
=\(\dfrac{-9}{4}\).\(\left(\dfrac{41}{12}-\dfrac{11}{9}\right)\)
=\(\dfrac{-9}{4}.\dfrac{41}{12}-\dfrac{-9}{4}.\dfrac{11}{9}\)
=\(\dfrac{-123}{16}-\dfrac{-11}{4}\)
=\(\dfrac{-123}{16}-\dfrac{-44}{16}\)
=\(\dfrac{-79}{16}\)
\(\left(-25\%+0,75+\dfrac{7}{12}\right)\div\left(-2\dfrac{1}{8}\right)\)
=\(\left(\dfrac{-1}{4}+\dfrac{3}{4}+\dfrac{7}{12}\right)\div\left(\dfrac{-17}{8}\right)\)
=\(\left(\dfrac{-3}{12}+\dfrac{9}{12}+\dfrac{7}{12}\right).\dfrac{-8}{17}\)
=\(\dfrac{13}{12}.\dfrac{-8}{17}=\dfrac{-26}{51}\)
\(.2.\)
\(a.\)
\(2x+\dfrac{1}{2}=-\dfrac{5}{3}\)
\(\Rightarrow2x=-\dfrac{5}{3}-\dfrac{1}{2}=-\dfrac{13}{6}\)
\(\Rightarrow x=-\dfrac{13}{6}:2=-\dfrac{13}{12}\)
Vậy : \(x=-\dfrac{13}{12}\)
\(b.\)
\(\dfrac{1}{7}-\dfrac{3}{5}x=\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{5}x=\dfrac{1}{7}-\dfrac{3}{5}=-\dfrac{16}{35}\)
\(\Rightarrow x=-\dfrac{16}{35}:\dfrac{3}{5}=-\dfrac{16}{21}\)
Vậy : \(x=-\dfrac{16}{21}\)
\(c.\)
\(\dfrac{3}{4}x+\dfrac{1}{2}=-\dfrac{3}{5}\)
\(\Rightarrow\dfrac{3}{4}x=-\dfrac{3}{5}-\dfrac{1}{2}=-\dfrac{11}{10}\)
\(\Rightarrow x=-\dfrac{11}{10}:\dfrac{3}{4}=-\dfrac{22}{15}\)
Vậy : \(x=-\dfrac{22}{15}\)
\(d.\)
\(-\dfrac{2}{15}-x=-\dfrac{3}{10}\)
\(\Rightarrow x=-\dfrac{2}{15}-\left(-\dfrac{3}{10}\right)=\dfrac{1}{6}\)
Vậy : \(x=\dfrac{1}{6}\)
Bài 1)
Ta có:
A = \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+\dfrac{1}{8^2}\)
A < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
A < \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)
A < \(1-\dfrac{1}{8}\) = \(\dfrac{7}{8}\) < 1
Vậy A < 1
Bài 2)
Ta thấy:
\(\dfrac{2011}{2012+2013}< \dfrac{2011}{2012};\dfrac{2012}{2012+2013}< \dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011}{2012+2013}+\dfrac{2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) \(\dfrac{2011+2012}{2012+2013}< \dfrac{2011}{2012}+\dfrac{2012}{2013}\)
\(\Rightarrow\) A < B
Bài 3)
Ta có:
B = \(\left(1-\dfrac{1}{1}\right)\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= \(0.\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)......\left(1-\dfrac{1}{20}\right)\)
= 0
Bài 3)
Ta có:
A = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\)
\(\Rightarrow\) 2A = \(2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) 2A = \(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\)
\(\Rightarrow\) 2A - A = \(\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{2011}}\right)\)-\(\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+.....+\dfrac{1}{2^{2012}}\right)\)
\(\Rightarrow\) A = 2 - \(\dfrac{1}{2^{2012}}\) = \(\dfrac{2^{2013}-1}{2^{2012}}\)
Bài 5)
\(\pi\) + 5 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) \(\pi\) - 2 + 7 \(⋮\) \(\pi\) - 2
\(\Leftrightarrow\) 7 \(⋮\) \(\pi\) - 2 (vì \(\pi\) - 2 \(⋮\) \(\pi\) - 2)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) Ư(7)
\(\Leftrightarrow\) \(\pi\) - 2 \(\in\) \(\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow\) \(\pi\) \(\in\) \(\left\{1;3;-5;9\right\}\)
Ta có \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
Cộng vế với vế ta được
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{20^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow T< 2-\dfrac{1}{20}=\dfrac{39}{20}\)
mà 39/20 < 8/7 => T < 8/7