Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Với a = -3 ta được:
\(\dfrac{x+3}{x-3}-\dfrac{x-3}{x+3}+\dfrac{27-3}{x^2-9}=0\)
\(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{24}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow x^2+6x+9-x^2+6x-9+24=0\)
\(\Leftrightarrow12x+24=0\)
\(\Leftrightarrow x=-2\)
Giải phương trình :
\(\dfrac{x-a}{x+a}-\dfrac{x+a}{x-a}+\dfrac{3a^2+a}{x^2-a^2}=0\)
a) Với a = -3
\(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}=0\)
ĐKXĐ : \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-3\\x\ne3\end{matrix}\right.\)
Ta có : \(\dfrac{x-3}{x+3}-\dfrac{x+3}{x-3}+\dfrac{27+3}{x^2-3^2}\)
\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{27+3}{\left(x+3\right)\left(x-3\right)}=0\)
Khử mẫu ta có : \(\left(x-3\right)^2-\left(x+3\right)^2+27+3=0\)
⇔ \(x^2+6x+9-x^2+6x-9+30=0\)
\(\Leftrightarrow12x+30=0\)
\(\Leftrightarrow12x=-30\)
\(\Leftrightarrow x=-\dfrac{5}{2}\)
Tập nghiệm của pt là: \(S=\left\{-\dfrac{5}{2}\right\}\)
b) Với a = 1
\(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)
ĐKXĐ : \(\left\{{}\begin{matrix}x+1\ne0\\x-1\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x\ne1\end{matrix}\right.\)
Ta có : \(\dfrac{x-1}{x+1}-\dfrac{x+1}{x-1}+\dfrac{3+3}{x^2-1}=0\)
\(\Leftrightarrow\) \(\dfrac{\left(x-1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}-\dfrac{\left(x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\dfrac{3+3}{\left(x+1\right)\left(x-1\right)}=0\)
Khử mẫu ta có : \(\left(x-1\right)^2-\left(x+1\right)^2+6=0\)
\(\Leftrightarrow x^2+x-1-x^2+x+1+6=0\)
\(\Leftrightarrow2x+6=0\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
Tập nghiệm của pt là : \(S=\left\{-3\right\}\)
a) Thay a = -1 vào phương trình
\(\dfrac{x-1}{x+3}+\dfrac{x-3}{x+1}=2\)
\(\Rightarrow\dfrac{x^2-1+x^2-9}{\left(x+3\right)\left(x+1\right)}=2\)
\(\Rightarrow2x^2-10=2\left(x+3\right)\left(x+1\right)=2x^2+8x+6\)
\(\Rightarrow2x^2+8x+6-2x^{10}+10=0\)
\(\Rightarrow8x+16=0\Rightarrow x=-2\)
b, c Làm tương tự như câu a
d)
Phương trình nhận x = 1 làm nghiệm
=> \(\dfrac{1+a}{1+3}+\dfrac{1-3}{1-a}=2\)
\(\Rightarrow\dfrac{a+1}{4}+\dfrac{2}{a-1}=2\)
\(\Rightarrow\dfrac{a^2-1+8}{4\left(a-1\right)}=2\)
\(\Rightarrow a^2+7=2\left(4a-1\right)=8a-2\)
\(\Rightarrow a^2-8x+9=0\)
\(\Rightarrow\left[{}\begin{matrix}a=4+\sqrt{7}\\a=4-\sqrt{7}\end{matrix}\right.\)
a) Khi $a=3$, ta có phương trình:
$$x-3x+3-x+3x-3+3^2+3^3-3^2=0$$
$$\Leftrightarrow 6x=51 \Leftrightarrow x=\frac{17}{2}$$
Vậy nghiệm của phương trình là $x=\frac{17}{2}$.
b) Khi $a=1$, ta có phương trình:
$$x-x+1-x+1x-1+3+1-1=0$$
$$\Leftrightarrow x=0$$
Vậy nghiệm của phương trình là $x=0$.
c) Để phương trình có nghiệm $x=0,5$, ta cần giải phương trình:
$$0,5-a(0,5)+a-0,5+a(0,5)-a+3a^2+a^3-a^2=0$$
$$\Leftrightarrow a^3+3a^2-2a=0$$
$$\Leftrightarrow a(a-1)(a+2)=0$$
Vậy các giá trị của $a$ để phương trình có nghiệm $x=0,5$ là $a=0,1$ hoặc $a=-2$.
\(a,4x^2-\left(2x-1\right)\left(1-4x\right)=1\)
\(\left(2x-1\right)\left(1-4x\right)=4x.4x-1\)
\(TH1:\orbr{\begin{cases}2x-1=4x.4x-1\\1-4x=4x.4x-1\end{cases}}\Rightarrow\orbr{\begin{cases}2x-4x.4x=-1+1\\-4x-4x.4x=-1-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-16x=0\\-4x-16x=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-14x=0\\-20x=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{10}\end{cases}}}\)
Vậy pt có nghiệm là (x;y) = (0;1/10)
tự thực hiện tiếp vs dấu - , kl TH1 thoi
bài 1 câu a,b tự làm nhé " thay k=-3 vào là ra
bài 1 câu c "
\(4x^2-25+k^2+4kx=0.\)
thay x=-2 vào ta được
\(16-25+k^2+-8k=0\)
\(-9+k^2-8k=0\Leftrightarrow k^2+k-9k-9=0\)
\(k\left(k+1\right)-9\left(k+1\right)=0\)
\(\left(k+1\right)\left(k-9\right)=0\)
vậy k=1 , 9 thì pt nhận x=-2
bài 2 xác đinh m ? đề ko có mờ đề phải là xác định a nếu là xác định a thì thay x=1 vào rồi tính là ra
bài 3 cũng éo hiểu xác định a ? a ở đâu
1 là phải xác đinh m , nếu là xác đinh m thì thay x=-2 vào rồi làm
. kết luận của chúa Pain đề như ###
a) ĐKXĐ : \(x\ne\pm a\).
Với \(a=-3\) khi đó ta có pt :
\(A=\frac{x-3}{-3-x}-\frac{x+3}{-3+x}=\frac{-3\left(-9+1\right)}{\left(-3\right)^2-x^2}\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x+3\right)-\left(x+3\right)\left(-3-x\right)}{\left(-3-x\right)\left(-3+x\right)}+\frac{24}{\left(-3-x\right)\left(-3+x\right)}=0\)
\(\Rightarrow x^2-9-\left(-3x-x^2-9-3x\right)+24=0\)
\(\Leftrightarrow2x^2+6x+24=0\)
\(\Leftrightarrow x^2+3x+12=0\) ( vô nghiệm )
Phần b) tương tự.
\(A=\frac{x+a}{a-x}-\frac{x-a}{a+x}=\frac{a\left(3x+1\right)}{a^2-x^2}\)
\(=\frac{x+a}{a-x}+\frac{x-a}{a+x}=\frac{a\left(3+1\right)}{\left(a-x\right)\left(a+x\right)}\)
\(=\frac{\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+1\right)}=\frac{a\left(3a+1\right)}{\left(a+x\right)\left(a-x\right)}\)
\(\Leftrightarrow\left(x+a\right)^2+\left(x-a\right)\left(a-x\right)=a\left(3a+1\right)\)
\(\Leftrightarrow x^2+2ax+a^2-ax-x^2-a^2+ax=3a^2+a\)
\(\Leftrightarrow2ax=3a^2+a\)
\(\Leftrightarrow x=\frac{3a^2+a}{2a}\left(a\ne0\right)\)
a) Khi x=-3 => \(x=\frac{3\cdot\left(-3\right)^2-3}{2\left(-3\right)}=-13\)
b) a=1
\(\Leftrightarrow x=\frac{3\cdot1^2+1}{2\cdot1}=2\)