Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 7^n có tận cùng là lẻ, mà A= 7+7^2+.....+7^8 là tổng của 7 số lẻ nên a có tận cùng là số lẻ.
b) Có A= 7+7^2+7^3+7^4+7^5+7^6+7^7+7^8
A= (7+7^3) + (7^2+7^4) + (7^5+7^7) + (7^6+7^8)
A= 7.(1+7^2) + 7^2 .(1+7^2) + 7^5.(1+7^2) + 7^6.(1+7^2)
A= 7.50 + 7^2.50 + 7^5.50 + 7^6.50 = (7+7^2+7^5+7^6) .50
Do đó A chia hết cho 50 => A chia hết cho 5.
c) Vì A lẻ và A chia hết cho 5 => A có tận cùng là số 5.
a)
gọi 3 số chẵn liên tiếp là 2x,4x,6x( x là số tự nhiên)
ta có 2x+4x+6x=12x chia hết cho 6
=> Tổng của ba số chẵn liên tiếp thì chia hết cho 6
b)
gọi 3 số lẻ liên tiếp là 3k-1 , 3k , 3k+1( k là số tự nhiên)
ta có 3k-1+3k+3k+1=9k chia hết cho 3 nhưng không chia hết cho 2
=> Tổng ba số lẻ liên tiếp ko chia hết cho 6
c)
a chia hết cho b=> a=b.x(x là số tự nhiên)
b chia hết cho c=> b= c.y(y là số tự nhiên)
thay b=c.y, ta có a= c.y.x chia hết cho c
=> Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c
d)
a chia hết cho 7=> a = 7x ( x là số tự nhiên)
b chia hết cho 7=> b=7y(y là số tự nhiên)
a-b=7x7t=7(x-y) chia hết cho 7
=> Nếu a và b chia hết cho 7 có cùng số dư thì hiệu a - b chia hết cho 7
học tốt
a) Gọi 3 số chẵn liên tiếp lần lượt là 2n, 2n+2, 2n+4
Tổng của ba số chẵn liên tiếp là: 2n + 2n+2 + 2n+4
= 6n+6
= 6(n+1) chia hết cho 6
Vậy tổng của ba số chẵn liên tiếp thì chia hết cho 6
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon