K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

S=\(\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}\)

S=\(\frac{1}{1+2}+\frac{1}{2+3}+\frac{1}{3+4}+...+\frac{1}{50+51}\)

S=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}\)

S=1-\(\frac{1}{51}\)

S=\(\frac{50}{51}=1,02\)

1,02 ko phải là số tự nhiên.

Vậy S ko phải là số tự nhiên.

Chứng minh xong!

Nếu thấy đúng tik cho mk nhé!!!

30 tháng 3 2019

thanks bn nhaĐỖ NG HÀ ANHvui

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

28 tháng 3 2019

\(S=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{101}>\frac{1}{101}+\frac{1}{101}+\frac{1}{101}+...\frac{1}{101}\)(97 phân số\(\frac{1}{101}\))

\(S=\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+...+\frac{1}{101}>\frac{97}{101}\)\(\Rightarrow S< 1\)

Do \(0< S< 1\)nên \(S\)không phải là số tự nhiên

28 tháng 3 2019

cảm ơn hùng

29 tháng 3 2019

Đạt A bằng \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\) ta có

\(\frac{1}{101}< \frac{1}{100}\)

\(\frac{1}{102}< \frac{1}{100}\)

...

\(\frac{1}{200}< \frac{1}{100}\)

\(\frac{\Rightarrow1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.100=\frac{100}{100}=1\)

Vậy \(A< 1\)

29 tháng 3 2019

Bài này làm cực kì dễ, 2 phút là xong, chẳng ai bt làm là sao:(((((

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< 1\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)(100 phân số 1/100)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< \frac{100}{100}=1\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}< 1\)

Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)Hãy so sánh S và \(\frac{1}{2}\)Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)Bài 4: Cho tổng...
Đọc tiếp

Bài 1: Cho A= \(\frac{2011}{2012}\)\(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)

Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)

Hãy so sánh S và \(\frac{1}{2}\)

Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)

S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)

Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

Chứng tỏ rằng A>1

Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:

\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

Bài 6: Chứng tỏ rằng

D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1

Bài 7: 

C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)

Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm

4
10 tháng 6 2016

sorry,quá dài

10 tháng 6 2016

Đề bài 7 có sai gì không bạn?