K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

\(\frac{x^4+y^4+z^4+t^4}{x^3+y^3+z^3+t^3}=\frac{\left(x^4+y^4+z^4+t^4\right)\left(x^2+y^2+z^2+t^2\right)}{\left(x^3+y^3+z^3+t^3\right)\left(x^2+y^2+z^2+t^2\right)}\)

\(\ge\frac{x^3+y^3+z^3+t^3}{x^2+y^2+z^2+t^2}=\frac{\left(x^3+y^3+z^3+t^3\right)\left(x+y+z+t\right)}{\left(x^2+y^2+z^2+t^2\right)\left(x+y+z+t\right)}\)

\(\ge\frac{x^2+y^2+z^2+t^2}{x+y+z+t}\ge\frac{\left(x+y+z+t\right)^2}{4\left(x+y+z+t\right)}=\frac{1}{4}\)

Dấu "=" xảy ra tại x=y=z=t=1/4

Bài làm có tham khảo của GOD Đạt Hồ

19 tháng 1 2020
Cho mình hỏi là bạn ấy dùng bất đẳng thức gì vây
NV
17 tháng 10 2019

1/ ĐKXĐ: \(x\ge1;y\ge4\)

\(M=\frac{1\sqrt{x-1}}{x}+\frac{2.\sqrt{y-4}}{2y}\le\frac{1+x-1}{2x}+\frac{4+y-4}{4y}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}\)

\(M_{max}=\frac{3}{4}\) khi \(\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-4}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=8\end{matrix}\right.\)

2/ \(\Leftrightarrow x^2-2xy+y^2+x^2+4x+4=8\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+2\right)^2=8=2^2+2^2\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=4\\\left(x+2\right)^2=4\end{matrix}\right.\) \(\Rightarrow...\)

3/ \(\frac{x^2}{y^2}+1\ge2\sqrt{\frac{x^2}{y^2}}=\frac{2x}{y}\)

Tương tự: \(\frac{y^2}{z^2}+1\ge\frac{2y}{z}\) ; \(\frac{z^2}{x^2}+1\ge\frac{2z}{x}\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+3\ge\frac{2x}{y}+\frac{2y}{z}+\frac{2z}{x}=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}+3\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\sqrt{\frac{xyz}{xyz}}=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+3\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)

Dấu "=" xảy ra khi \(x=y=z\)

23 tháng 11 2019

Ta có:

\(x^4+y^4\ge x^3y+xy^3\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x^3+y^3\right)\left(x+y\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

Σ\(\frac{x^4+y^4}{x^3+y^3}\)\(\ge x+y+z=2008\)

26 tháng 5 2015

đặt A=x/x+y+z    +y/y+z+t   +z/z+t+x   +t/t+x+y

ta có      x/x+y+z>x/x+y+z+t

y/y+z+t>y/x+y+z+t

z/z+t+x>z/z+t+x+y

t/t+x+y>t/x+t+y+z

=>A>x/x+y+t+z  +t/x+y+t+z  +z/x+y+t+z  +y/x+t+y+z=x+y+z+t/x+y+z+t=1>3/4  (1)

*)y/y+z+t<y+x/y+z+t+x

x/x+y+z<x+t/x+y+z+t

z/z+t+x<z+y/x+y+z+t

t/t+x+y<t+z/t+x+y+z

=>A<y+x/x+y+z+t  +x+t/x+y+z+t  +z+y/x+y+z+t  +t+z/x+y+z+t

            =y+x+x+t+z+y+t+z/x+y+z+t=2(x+y+z+t)/x+y+z+t=2<5/2   (2)

từ (1) và (2) =>3/4<A<5/2

=>

26 tháng 5 2015

Ta có:

\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{x+t}{x+y+z+t}+\frac{x+y}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+t}{x+y+z+t}\)

\(\Rightarrow1<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<2\)

\(\Rightarrow\frac{3}{4}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{5}{2}\)

26 tháng 8 2019

3, \(P=a+b+\frac{1}{2a}+\frac{2}{b}\)

=\(\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\)

AD bđt cosi vs hai số dương có:

\(\frac{1}{2a}+\frac{a}{2}\ge2\sqrt{\frac{1}{2a}.\frac{a}{2}}=2\sqrt{\frac{1}{4}}=1\)

\(\frac{b}{2}+\frac{2}{b}\ge2\sqrt{\frac{b}{2}.\frac{2}{b}}=2\)

\(\frac{a+b}{2}\ge\frac{3}{2}\) (vì a+b \(\ge3\))

=> \(P=\left(\frac{1}{2a}+\frac{a}{2}\right)+\left(\frac{b}{2}+\frac{2}{b}\right)+\frac{a+b}{2}\ge1+2+\frac{3}{2}\)

<=> P \(\ge4.5\)

Dấu "=" xảy ra <=>\(\left\{{}\begin{matrix}\frac{1}{2a}=\frac{a}{2}\\\frac{b}{2}=\frac{2}{b}\\a+b=3\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a^2=1\\b^2=4\\a+b=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}a=1\\b=2\\a+b=3\end{matrix}\right.\)

=> a=2,b=3

Vậy minP=4.5 <=>a=1,b=2

15 tháng 1 2020

Ta đặt: \(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c;\frac{1}{t}=d\)  ( a, b, c, d >0 )

Khi đó ta cần chứng minh:

 \(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)

\(VT=\frac{a^3}{\frac{b+c+d}{bcd}}+\frac{b^3}{\frac{a+c+d}{acd}}+\frac{c^3}{\frac{a+b+d}{abd}}+\frac{d^3}{\frac{a+b+c}{abc}}\)

\(=\frac{a^3}{\frac{a\left(b+c+d\right)}{abcd}}+\frac{b^3}{\frac{b\left(a+c+d\right)}{abcd}}+\frac{c^3}{\frac{c\left(a+b+d\right)}{abcd}}+\frac{d^3}{\frac{d\left(a+b+c\right)}{abcd}}\)

\(=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{3\left(a+b+c+d\right)}=\frac{a+b+c+d}{3}=VP\)

Vậy ta đã chứng minh được

\(\frac{a^3}{\frac{1}{bc}+\frac{1}{cd}+\frac{1}{db}}+\frac{b^3}{\frac{1}{ac}+\frac{1}{cd}+\frac{1}{da}}+\frac{c^3}{\frac{1}{ab}+\frac{1}{bd}+\frac{1}{da}}+\frac{d^3}{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}}\ge\frac{1}{3}\left(a+b+c+d\right)\)

Dấu "=" xảy ra <=> a = b = c = d 

Vậy : 

\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

Dấu "=" xảy ra <=> x = y = z = t = 1

15 tháng 1 2020

\(\frac{3}{x\sqrt{x}}=3\sqrt[3]{y^2z^2t^2}\le yz+zt+ty\)

\(\Sigma\frac{1}{x^3\left(yz+zt+ty\right)}\ge\Sigma\frac{1}{\frac{3x^3}{x\sqrt{x}}}=\Sigma\frac{\sqrt{x}}{3x^2}\ge\frac{4}{3}\sqrt[4]{\frac{\sqrt{xyzt}}{\left(xyzt\right)^2}}=\frac{4}{3}\)

15 tháng 1 2020

Câu hỏi của Ryan Park - Toán lớp 9 - Học toán với OnlineMath

Chứng minh đc:

\(\frac{1}{x^3\left(yz+zt+ty\right)}+\frac{1}{y^3\left(xz+zt+tx\right)}+\frac{1}{z^3\left(xy+yt+tx\right)}+\frac{1}{t^3\left(xy+yz+zx\right)}\)

\(\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}\right)\)

\(\ge\frac{4}{3}.\sqrt[4]{\frac{1}{xyzt}}=\frac{4}{3}\)