Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(x,y,x\) thỏa mãn điều kiện \(x+y+z+xy+yz+zx=6\) .Vậy giá trị nhỏ nhất của \(P=x^2+y^2+z^2\) là
Ta có:
\(\left\{{}\begin{matrix}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\\2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\end{matrix}\right.\)
Cộng theo vế cá BĐT trên ta có:
\(3\left(x^2+y^2+z^2\right)+3\ge2\left(x+y+z+xy+yz+xz\right)\)
\(\Rightarrow3\left[\left(x^2+y^2+z^2\right)+1\right]\ge12\)
\(\Rightarrow\left(x^2+y^2+z^2\right)+1\ge4\Rightarrow P\ge3\)
Câu hỏi của Phạm Nguyễn Phương UYên - Toán lớp 8 | Học trực tuyến
Nằm ngay phía dưới
Ta có:
\(xy+yz+zx=\frac{\left(x+y+z\right)^2-x^2-y^2-z^2}{2}=\frac{7^2-23}{2}=13\)
Ta lại có:
\(xy+z-6=xy+z+1-x-y-z=\left(x-1\right)\left(y-1\right)\)
\(\Rightarrow A=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}\)
\(=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-1\)
\(M=\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)
\(=\frac{x^2y^2+y^2z^2+z^2x^2}{xyz}\)
\(=\frac{\left(xy+yz+zx\right)^2-2x^2yz-2xyz^2-2x^2yz}{xyz}\)
\(=\frac{0-2xyz\left(x+y+z\right)}{xyz}\)
\(=0-2\left(x+y+z\right)\)
\(=0-2.\left(-1\right)=0-\left(-2\right)=2\)
Chúc bạn học tốt.
Từ x2+12x \(\ge2x\)
y2+12y\(\ge2y\)
z2+12z\(\ge2z\)
2(x2+y2+z2) \(\ge\)2(xy+yz+xz)
cộng các BĐT trên ta có
3(x2+y2+z2)+3 \(\ge\) 2(x+y+z+xy+yz+xz)
=> \(x^2+y^2+z^2\ge3\) => GTNN của \(x^2+y^2+z^2=3\)
đúng nhé
ban giang ho dai ca oi tai sao x^2+12x >=2x vay