Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy, ta có:
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\sqrt{\dfrac{x^2}{y^2}\times\dfrac{y^2}{z^2}}+\sqrt{\dfrac{y^2}{z^2}\times\dfrac{z^2}{x^2}}+\sqrt{\dfrac{x^2}{y^2}\times\dfrac{z^2}{x^2}}=\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{z}{y}\left(\text{đ}pcm\right)\)
Dấu "=" xảy ra khi x = y = z
Lời giải:
Đặt $\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p$ với $m,n,p>0$.
BĐT cần chứng minh tương đương với:
(m^2a+n^2b+p^2c)(a+b+c)\geq (am+bn+cp)^2$
$\Leftrightarrow m^2(ab+ac)+n^2(ba+bc)+p^2(ca+cb)\geq 2abmn+2amcp+2bncp$
$\Leftrightarrow ab(m^2-2mn+n^2)+bc(n^2-2np+p^2)+ca(m^2-2mp+p^2)\geq 0$
$\Leftrightarrow ab(m-n)^2+bc(n-p)^2+ca(m-p)^2\geq 0$
(luôn đúng với $a,b,c>0$)
Ta có đpcm.
Ta có:
\(\left(x+y+z\right)\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)
\(\Leftrightarrow x+y+z=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}+x+y+z\)
\(\Leftrightarrow\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=0\)
<span class="mfrac" id="MathJax-Span-48"><span style="display: inline-block; position: relative; width: 2.445em; height: 0px; margin-right: 0.146em; margin-left: 0.146em;"><span style="position: absolute; clip: rect(3.068em 1000.96em 4.361em -999.998em); top: -4.691em; left: 50%; margin-left: -0.477em;"><span class="msubsup" id="MathJax-Span-49"><span style="display: inline-block; position: relative; width: 0.96em; height: 0px;"><span style="position: absolute; clip: rect(3.451em 1000.48em 4.361em -999.998em); top: -4.021em; left: 0em;"><span class="mi" id="MathJax-Span-50" style="font-family: MathJax_Math-italic;">y<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.002em;"></span></span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; top: -4.404em; left: 0.529em;"><span class="mn" id="MathJax-Span-51" style="font-size: 70.7%; font-family: MathJax_Main;">2</span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span></span></span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; clip: rect(3.307em 1002.25em 4.265em -999.998em); top: -3.35em; left: 50%; margin-left: -1.147em;"><span class="mrow" id="MathJax-Span-52"><span class="mi" id="MathJax-Span-53" style="font-family: MathJax_Math-italic;">z<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.002em;"></span></span><span class="mo" id="MathJax-Span-54" style="font-family: MathJax_Main; padding-left: 0.242em;">+</span><span class="mi" id="MathJax-Span-55" style="font-family: MathJax_Math-italic; padding-left: 0.242em;">x</span></span><span style="display: inline-block; width: 0px; height: 4.025em;"></span></span><span style="position: absolute; clip: rect(0.864em 1002.45em 1.2em -999.998em); top: -1.291em; left: 0em;"><span style="display: inline-block; overflow: hidden; vertical-align: 0em; border-top: 1.3px solid; width: 2.445em; height: 0px;"></span><span style="display: inline-block; width: 0px; height: 1.056em;"></span></span></span></span>
Câu hỏi của Vũ Anh Quân - Toán lớp 8 | Học trực tuyến nè nhé b .
Bài này mình làm 2 cách cho bạn dễ hiểu nha
C1:\(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\Leftrightarrow x\left(z+x\right)\left(x+y\right)+y\left(y+z\right)\left(x+y\right)+z\left(z+x\right)\left(y+z\right)=\left(y+z\right)\left(x+y\right)\left(z+x\right) \)\(\Leftrightarrow x^2\left(y+z\right)+y^2\left(x+z\right)+z^2\left(x+y\right)+x^3+y^3+z^3+3xyz=x^2\left(y+z\right)+y^2\left(x+z\right)+z^2\left(x+y\right)+2xyz\)
\(\Leftrightarrow x^3+y^3+z^3+xyz=0\)
\(\Rightarrow\left(x^3+y^3+z^3+xyz\right)\left(x+y+z\right)=0 \)
Ta cũng thấy Q=\(Q=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}=\dfrac{x^2\left(z+x\right)\left(x+y\right)+y^2\left(y+z\right)\left(x+y\right)+z^2\left(y+z\right)\left(z+x\right)}{\left(y+z\right)\left(x+z\right)\left(x+y\right)}=\dfrac{\left(x^3+y^3+z^3+xyz\right)\left(x+y+z\right)}{\left(y+z\right)\left(x+z\right)\left(x+y\right)}=0\)
C2 nè :
\(P=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\)
\(P=\left(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\right)\left(x+y+z\right)=x+y+z .\)
\(\Leftrightarrow\dfrac{x^2+x\left(y+z\right)}{y+z}+\dfrac{y^2+y\left(x+z\right)}{z+x}+\dfrac{z^2+z\left(x+y\right)}{x+y}=x+y+z.\)
\(\Leftrightarrow\dfrac{x^2}{y+z}+x+\dfrac{y^2}{z+x}+y+\dfrac{z^2}{x+y}+z=x+y+z \left(ĐPCM\right)\)