Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VT=x-\dfrac{xyz}{yz+1}+y-\dfrac{xyz}{xz+1}+z-\dfrac{xyz}{xy+1}\)
\(=x+y+z-xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\)
Ta sẽ chứng minh BĐt sau :
\(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\right)\ge xyz\)
hay \(xyz\left(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}-1\right)\ge0\)
Mà đây là 1 điều luôn đúng vì \(\dfrac{1}{xy+1}+\dfrac{1}{yz+1}+\dfrac{1}{xz+1}\ge\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{x^2+y^2+z^2+3}>1\) và \(xyz\ge0\)
Do đó \(VT\le x+y+z-xyz=x\left(1-yz\right)+y+z\)(*)
Áp dụng BĐt bunyakovsky:
\(VT^2=\left[x\left(1-yz\right)+\left(y+z\right).1\right]^2\le\left[x^2+\left(y+z\right)^2\right]\left[1+\left(1-yz\right)^2\right]\)\(=\left(2+2yz\right)\left(y^2z^2-2yz+2\right)=4+2y^2z^2\left(yz-1\right)\le4\)
( do \(yz\le\dfrac{y^2+z^2}{2}\le\dfrac{x^2+y^2+z^2}{2}=1\))
\(\Rightarrow VT\le2\) (đpcm)
Dấu = xảy ra khi \(x=0;y=z=1\) cùng các hoán vị
P/s: Từ chỗ (*) là 1 BĐT có nhiều cách chứng minh .
1. Theo BĐT AM - GM, ta có:
\(\Sigma\dfrac{1}{\left(2x+y+z\right)^2}=\Sigma\dfrac{1}{\left\{\left(x+y\right)+\left(x+z\right)\right\}^2}\le\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\)
Do đó BĐT ban đầu sẽ đúng nếu ta C/m được
\(\Sigma\dfrac{1}{4\left(x+y\right)\left(x+z\right)}\le\dfrac{3}{16}\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
\(\Leftrightarrow\dfrac{8}{3}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\left(xy+yz+zx\right)\)
Nhưng điều này đúng vì \(xy+yz+zx\ge\sqrt[3]{x^2y^2z^2}=3\) và theo bổ đề bên trên. Từ đó ta có điều phải chứng minh. Dấu bằng xảy ra \(\Leftrightarrow a=b=c=1\)
( Còn bài 2 để suy nghĩ rồi tối đăng cho nha )
theo bđt cauchy schwarz ta có
\(\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2\sqrt{y^3z^2}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2\sqrt{z^3y^2}}=\dfrac{1}{zy}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}+\dfrac{\dfrac{1}{y^2}+\dfrac{1}{z^2}}{2}+\dfrac{\dfrac{1}{z^2}+\dfrac{1}{x^2}}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)\(\Rightarrow dpcm\)
Bài 1:
Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min
Nếu chuyển tìm max thì em tìm như sau:
Áp dụng BĐT Cauchy_Schwarz:
\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)
Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)
Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)
Bài 2:
Áp dụng BĐT Cauchy-Schwarz :
\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)
\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)
Hoàn toàn tương tự:
\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)
\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)
Cộng theo vế:
\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)
hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Qui đồng lên ta có: (cần chứng minh)
\(2\sum\left(x^2+1\right)^2\left(z^2+1\right)\le7\left(x^2+1\right)\left(y^2+1\right)\left(z^2+1\right)\)
\(\Leftrightarrow2\sum\left(x^4z^2+x^4+2x^2z^2+2x^2+z^2+1\right)\le7\left(x^2y^2z^2+\sum x^2+\sum x^2y^2+1\right)\)
\(\Leftrightarrow2\sum x^4+2\sum x^4z^2\le7x^2y^2z^2+3\sum x^2z^2+\sum x^2+1\)
Hay \(\left(\sum x^2+x+y+z-2\sum x^4\right)+7x^2y^2z^2+3\sum x^2z^2-2\sum x^4z^2\ge0\)
hay \(\sum x^2\left(1-x^2\right)+\sum x\left(1-x^3\right)+7x^2y^2z^2+\sum x^2z^2+2\sum x^2z^2\left(1-x^2\right)\ge0\)
(luôn đúng do x, y, z\(\in\left[0;1\right]\))
Vậy ta có đpcm. Dấu = xảy ra khi 2 số bằng 0, 1 số bằng 1.