Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm ta có:
\(x^4+x^4+y^4+z^4\geq4\sqrt[4]{x^8y^4z^4}=4|x^2yz|\ge 4x^2yz\)
\(x^4+y^4+y^4+z^4\geq 4xy^2z\)
\(x^4+y^4+z^4+z^4\geq 4xyz^2\)
Cộng theo vế và rút gọn:
\(\Rightarrow x^4+y^4+z^4\geq xyz(x+y+z)=3xyz\)
Dấu "=" xảy ra khi \(x=y=z\). Kết hợp với $x+y+z=3$ suy ra $x=y=z=1$
Do đó:
\(M=x^{2018}+y^{2019}+z^{2020}=1+1+1=3\)
ĐÂY NÀY:
( x +y) ^2 = a^2 => x^2 + 2xy + y^2 = a^2
=> 2xy = a^2 - ( x^2 + y^2) = a^2 -b
=> xy = a^2-b/2
Ta có E = x^3 + y^3 = ( x+ y)( x^2 - xy + y^2)
E = a ( b - a^2-b/2)
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
Bài 1 :
a) \(A=x^2-6x+11\)
\(A=x^2-2\cdot x\cdot3+3^2+2\)
\(A=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
b) \(B=2x^2+10x-1\)
\(B=2\left(x^2+5x-\frac{1}{2}\right)\)
\(B=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)
\(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)
c) \(C=5x-x^2\)
\(C=-\left(x^2-5x\right)\)
\(C=-\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]\)
\(C=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)
\(C=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Bài 2 :
\(\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[x+\left(y+z\right)\right]^3-x^3-y^3-z^3\)
\(=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3-x^3-y^3-z^3\)
\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+y^3+3y^2z+3yz^2+z^3-y^3-z^3\)
\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+3yz\left(y+z\right)\)
\(=3\left(y+z\right)\left[x^2+x\left(y+z\right)+yz\right]\)
\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)
\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)
\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)
Bài 5 :
a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)
=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
=> \(36x+3=0\)
=> \(x=-\frac{1}{12}\)
Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)
b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)
=> \(35x-5+60x-96+6x=0\)
=> \(101x-101=0\)
=> \(x=1\)
Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)
=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)
=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)
=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
=> \(-64x+123=0\)
=> \(x=\frac{123}{64}\)
Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
\(\left\{{}\begin{matrix}x+y+z=0\\x^2+y^2+z^2=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+xz+yz\right)=0\\xy+xz+yz=-\dfrac{1}{2}\end{matrix}\right.\) \(\left\{{}\begin{matrix}x^4+y^4+z^4+2\left[\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2\right]=1\\xy+xz+yz=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^4+y^4+z^4\right)=2-4\left[\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2\right]\\\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2+2\left[xyz\left(x+y+z\right)\right]=\dfrac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x^4+y^4+z^4\right)=2-4.\dfrac{1}{4}\\\left(xy\right)^2+\left(xz\right)^2+\left(yz\right)^2=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow2\left(x^4+y^4+z^4\right)=2-1=1\)