\(x;y>0\) và \(x+y\le2\).Tìm GTNN của biểu thức :

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

Ta có : \(S=\frac{20}{x^2+y^2}+\frac{11}{xy}\)

\(=\left(\frac{20}{x^2+y^2}+\frac{10}{xy}\right)+\frac{1}{xy}\)

\(=\left(\frac{20}{x^2+y^2}+\frac{20}{2xy}\right)+\frac{1}{xy}=20.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)

Áp dụng BĐT Svacxo ta có : 

\(20\cdot\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge20\cdot\frac{4}{x^2+y^2+2xy}=20\cdot\frac{4}{\left(x+y\right)^2}\ge20\cdot\frac{4}{2^2}=20\)

Mặt khác có : \(0< xy\le\frac{\left(x+y\right)^2}{4}\le\frac{2^2}{4}=1\)

\(\Rightarrow\frac{1}{xy}\ge1\)

Do đó : \(S\ge20+1=21\)

Dấu "=" xảy ra khi \(x=y=1\)

23 tháng 9 2020

Ez right??

NV
24 tháng 9 2019

\(P=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge\frac{20.4}{x^2+y^2+2xy}+\frac{4}{\left(x+y\right)^2}=\frac{80}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}=\frac{84}{\left(x+y\right)^2}\)

\(\Rightarrow P\ge\frac{84}{2^2}=21\Rightarrow P_{min}=21\) khi \(x=y=1\)

14 tháng 9 2016

Ta có : \(P=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) được \(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge\frac{4}{2^2}=1\)

Lại có : \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\ge\frac{4}{2^2}=1\)

Suy ra : \(P\ge20+1=21\)

Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}x,y>0\\x+y=2\\x=y\\x^2+y^2=2xy\end{cases}\) \(\Leftrightarrow x=y=1\)

Vậy MIN P = 21 <=> x = y = 1

27 tháng 9 2016

Từ BĐT \(\left(x+y\right)^2\ge4xy\) ta suy ra \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và \(\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}\)

Ta có : \(P=\frac{20}{x^2+y^2}+\frac{11}{xy}=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\ge20.\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\ge\frac{80}{4}+\frac{4}{4}=21\)

Dấu "=" xảy ra khi x = y = 1

Vậy Min P = 21 khi x = y = 1

11 tháng 9 2020

Ta có :

\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)

\(=20.\left[\frac{1}{x^2+y^2}+\frac{1}{2xy}\right]+\frac{1}{xy}\)

\(\ge20\cdot\frac{4}{x^2+y^2+2xy}+\frac{4}{\left(x+y\right)^2}\)

\(\ge20\cdot\frac{4}{2^2}+\frac{4}{2^2}=21\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

Vậy \(P_{min}=21\) khi \(x=y=1\)

21 tháng 10 2016

Ta có:

\(P=20\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)

\(\ge20\cdot\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+y\right)^2}\ge21\)

\(\Rightarrow P\ge21\)

Dấu = khi x=y=1

10 tháng 1 2018

Áp dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu = xảy ra <=>x=y=1/2

^_^

1 tháng 6 2019

em viết nhầm đề nha.M = \(\frac{y}{\sqrt{xy}-x}+\frac{x}{\sqrt{xy}+y}-\frac{x+y}{\sqrt{xy}}\)mới đúng