K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2018

cảm ơn

21 tháng 6 2018

\(1)\) Ta có : 

\(M=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)

\(M=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)

\(M=\left|x+1\right|+\left|x-1\right|\)

\(M=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(1-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1\end{cases}\Leftrightarrow}-1\le x\le1}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x+1\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge1\end{cases}}}\) ( loại ) 

Vậy GTNN của \(M\) là \(2\) khi \(-1\le x\le1\)

Chúc bạn học tốt ~ 

21 tháng 6 2018

b,ta co x^2+y^2=1

=>x^2=1-y^2

    y^2=1-x^2

ta co

\(\sqrt{x^4+4\left(1-x^2\right)}\)+\(\sqrt{y^4+4\left(1-y^2\right)}\)

=\(\sqrt{\left(x^2-2\right)^2}\)+\(\sqrt{\left(y^2-2\right)^2}\)

còn lại bạn xét các trường hợp của x^2-2 và y^2-2 là ra

23 tháng 4 2019

\(A=\frac{4}{\left(x+y\right)^2}+x^2+y^2\)

\(=\frac{4}{\left(x+y\right)^2}+\left(x+y\right)^2-2xy\)

\(=\frac{4}{\left(x+y\right)^2}+\frac{\left(x+y\right)^2}{4}+\frac{3}{4}\left(x+y\right)^2-2\)

\(=\frac{4}{\left(x+y\right)^2}+\frac{\left(x+y\right)^2}{4}+\frac{3}{4}\left(x^2+y^2\right)+\frac{3}{4}2xy-2\)

\(=\frac{4}{\left(x+y\right)^2}+\frac{\left(x+y\right)^2}{4}+\frac{3}{4}\left(x^2+y^2\right)+\frac{3}{2}-2\)

Áp dụng bất đẳng thức Cauchy:

\(A\ge2\sqrt{\frac{4}{\left(x+y\right)^2}\frac{\left(x+y\right)^2}{4}}+\frac{3}{4}2\sqrt{x^2y^2}+\frac{3}{2}-2\)

\(A\ge2+\frac{3}{2}+\frac{3}{2}-2\)

\(A\ge3\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

1)

Điều kiện: \(x\geq \frac{-1}{2}\)

Bình phương hai vế:

\(x^2+4=(2x+1)^2=4x^2+4x+1\)

\(\Leftrightarrow 3x^2+4x-3=0\)

\(\Leftrightarrow x=\frac{-2\pm \sqrt{13}}{3}\)

Do \(x\geq -\frac{1}{2}\Rightarrow x=\frac{-2+\sqrt{13}}{3}\) là nghiệm duy nhất của pt.

2)

a) \(x^2+x+12\sqrt{x+1}=36\) (ĐK: \(x\geq -1\) )

\(\Leftrightarrow (x^2+x-12)+12(\sqrt{x+1}-2)=0\)

\(\Leftrightarrow (x-3)(x+4)+\frac{12(x-3)}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow (x-3)\left[x+4+\frac{12}{\sqrt{x+1}+2}\right]=0\)

Do \(x\geq -1\Rightarrow x+4+\frac{12}{\sqrt{x+1}+2}\geq 3+\frac{12}{\sqrt{x+1}+2}>0\)

Do đó \(x-3=0\Leftrightarrow x=3\) (thỏa mãn)

Vậy pt có nghiệm x=3

b) Đặt \(\left\{\begin{matrix} \sqrt{x^2+7}=a\\ x+4=b\end{matrix}\right.\)

PT tương đương:

\(x^2+7+4(x+4)-16=(x+4)\sqrt{x^2+7}\)

\(\Leftrightarrow a^2+4b-16=ab\)

\(\Leftrightarrow (a-4)(a+4)-b(a-4)=0\)

\(\Leftrightarrow (a-4)(a+4-b)=0\)

+ Nếu \(a-4=0\Leftrightarrow \sqrt{x^2+7}=4\Leftrightarrow x^2=9\Leftrightarrow x=\pm 3\) (thỏa mãn)

+ Nếu \(a+4-b=0\Leftrightarrow a=b-4\)

\(\Leftrightarrow \sqrt{x^2+7}=x\)

\(\Rightarrow x\geq 0\). Bình phương hai vế thu được: \(x^2+7=x^2\Leftrightarrow 7=0\) (vô lý)

Vậy pt có nghiệm \(x=\pm 3\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

Câu 3:

Ta có \(M=\frac{x^2+2000x+196}{x}\)

\(\Leftrightarrow M=x+2000+\frac{196}{x}\)

Áp dụng BĐT AM-GM ta có: \(x+\frac{196}{x}\geq 2\sqrt{196}=28\)

\(\Rightarrow M=x+\frac{196}{x}+2000\geq 28+2000=2028\)

Vậy M (min) =2028. Dấu bằng xảy ra khi \(\left\{\begin{matrix} x=\frac{196}{x}\\ x>0\end{matrix}\right.\Rightarrow x=14\)

22 tháng 7 2018

Câu 1: Có sai đề không thế ạ :(
Câu 2: Ta có \(\left|x+\dfrac{15}{19}\right|\ge0\) với mọi x
\(\Rightarrow\left|x+\dfrac{15}{19}\right|-1\ge-1\)

Vậy GTNN của A là -1

Dấu "=" xảy ra khi \(\left|x+\dfrac{15}{19}\right|=0\Rightarrow x+\dfrac{15}{19}=0\Rightarrow x=-\dfrac{15}{19}\)