Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\left(x-y\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)cái này các bạn tự CM
\(\left(1-xy\right)^2\le\left(1+x^2\right)\left(1+y^2\right)\)
\(\Rightarrow\left(x-y\right)^2\left(1-xy\right)^2\le\left(1+x^2\right)^2\left(1+y^2\right)^2\)
\(\Rightarrow\left[\left(x-y\right)\left(1-xy\right)\right]\le\left[\left(1+x^2\right)\left(1+y^2\right)\right]\)cái dấu ngặc vuông là chỉ dấu giá trị tuyệt đối đấy mình ko biết đánh dấu giá trị tuyệt đối
\(\Rightarrow\left[\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\right]\le1\)
\(\Rightarrow-1\le\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x^2\right)\left(1+y^2\right)}\le1\)\(\Rightarrow-1\le A\le1\)
Làm tạm max, min chưa nhìn thấy điểm rơi :(
Với các số không âm \(a;b;c;d\) ta có:
\(a+b+c+d\ge4\sqrt[4]{abcd}\Rightarrow abcd\le\left(\frac{a+b+c+d}{4}\right)^4\)
Do \(x;y\) không âm \(\Rightarrow xy^2\ge0\Rightarrow P< 0\) nếu \(8-x-y< 0\) và \(P\ge0\) nếu \(8-x-y\ge0\Rightarrow P_{max}\) nếu có sẽ xảy ra khi \(8-x-y\ge0\)
Xét trường hợp \(8-x-y\ge0\) ta có:
\(P=4x.\frac{y}{2}.\frac{y}{2}\left(8-x-y\right)\le4\left(\frac{x+\frac{y}{2}+\frac{y}{2}+8-x-y}{4}\right)^4=64\)
\(\Rightarrow P_{max}=64\) khi \(\left\{{}\begin{matrix}x=\frac{y}{2}\\x=8-x-y\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Làm nốt min
\(P=xy^2\left(8-x-y\right)=xy^2.\left[8-\left(x+y\right)\right]\ge x.\frac{y}{2}.\frac{y}{2}.\left(8-12\right).4=x.\frac{y}{2}.\frac{y}{2}.\left(-16\right)\)
Áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3.\sqrt[3]{abc}\)
\(\Leftrightarrow\left(\frac{a+b+c}{3}\right)^3\ge abc\)
Dấu " = " xảy ra <=> a=b=c
Áp dụng:\(P\ge x.\frac{y}{2}.\frac{y}{2}.\left(8-12\right).4=x.\frac{y}{2}.\frac{y}{2}.\left(-16\right)\ge\left(\frac{x+\frac{y}{2}+\frac{y}{2}}{3}\right)^3.\left(-16\right)=\left(\frac{12}{3}\right)^3.\left(-16\right)=4^3.\left(-16\right)=-1024\)Dấu " = " xảy ra <=> \(\left\{{}\begin{matrix}x+y=12\\x=\frac{y}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=8\\x=4\end{matrix}\right.\)
KL:.......................
\(\left(xy+\frac{1}{xy}\right)^2-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left[\left(xy+\frac{1}{xy}\right)-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\right]\)
\(=\left(xy+\frac{1}{xy}\right)\left(xy+\frac{1}{xy}-xy-\frac{x}{y}-\frac{y}{x}-\frac{1}{xy}\right)\)
\(=\left(xy+\frac{1}{xy}\right)\left(-\frac{x}{y}-\frac{y}{x}\right)\)
\(=-\left(xy+\frac{1}{xy}\right)\left(\frac{x}{y}+\frac{y}{x}\right)=-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(-\left(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(=4\)
Vậy giá trị bt ko phụ thuộc vào biến
bn có thể giải thích rõ hơn tại sao lại bằng 4 được không? Dù gì thì cx cảm ơn bn đã tl câu hỏi của mk
Cho 2 số a,b thỏa mãn \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)
Tính giá trị của biểu thức \(M=2018\left(a+b\right)^2\)
Ta có
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y+1\right)^2\ge0\\\left(z+1\right)^2\ge0\end{cases}}\)và \(\hept{\begin{cases}x^2+1>0\\y^2+1>0\\z^2+1>0\end{cases}}\)
\(\Rightarrow A=\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\ge0\)
Kết hợp với điều kiện ban đầu thì
GTNN của A là 0 đạt được khi
\(\left(x,y,z\right)=\left(-1,-1,5;-1,5,-1;5,-1-1\right)\)
vào link này nhé
https://h.vn/hoi-dap/question/519160.html?pos=1454413
cái ảnh ở cuối nhá