K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

Từ \(x>y>0\) ta có :

\(x>y\Rightarrow xy>y^2\). (1)

\(x>y\Rightarrow x^2>xy.\) (2)

Từ (1) và (2) suy ra \(x^2>y^2\).

\(x^2>y^2\Rightarrow x^3>xy^2.\) (3)

\(x>y\Rightarrow xy^2>y^3\). (4)

Từ (3) và (4) suy ra \(x^3>y^3.\)

16 tháng 8 2017

\(x^3>y^3\)

16 tháng 8 2017

vì x>y nên \(x^3>y^{^{ }3}\)

3 tháng 1 2016

\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2>x+y\)
\(\Leftrightarrow x+y+2\sqrt{xy}>x+y\)
\(\Leftrightarrow2\sqrt{xy}>0\Leftrightarrow xy>0\)
mà xy>0 vì x>0;y>0-> đpcm

29 tháng 5 2016

- Xét nếu x < 0 thì y < 0 nhưng y < x => x.x.x > y.y.y => x3 > y3

- Xét nếu x > 0 thì y < 0 hoặc y > 0 nhưng y < x=> x.x.x > y.y.y => x3 > y3

29 tháng 5 2016

Ta có : 

TH1 : x ; y < 0 

mà y < x 

=) x3 > y3 ( vì x.x.x > y.y.y )

TH2 : x \(\ge\) 0 và y < 0 hoặc y > 0 

mà y < x  (1)

=) x3 > y3 ( từ 1 =) x.x.x > y.y.y )

Từ TH1 và TH2 

=) x3 > y

5 tháng 6 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y}=\dfrac{u}{v}=\dfrac{x-u}{y-v}\)

\(\Rightarrow x\left(y-v\right)=y\left(x-u\right)\)

Mà x > y

\(\Rightarrow y-v< x-u\)

\(\Rightarrow x+v>y+u\left(đpcm\right)\)

Vậy...

5 tháng 6 2017

ta có:\(x>y>u>v\)

\(\Rightarrow x^2>y^2>u^2>v^2\)

giả sử x+v>y+u là đúng

\(\Rightarrow\left(x+v\right)^2>\left(y+u\right)^2\\ \Leftrightarrow x^2+v^2+2xv>y^2+u^2+2yu\\ \Leftrightarrow x^2-y^2+v^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow x^2-x^2+u^2-u^2>2\left(yu-xv\right)\\ \Leftrightarrow yu-xv=0\\ \Leftrightarrow yu=xv\\ \Rightarrow\dfrac{x}{y}=\dfrac{u}{v}\left(đúng\right)\)

do đó: \(x+v>y+u\) đúng.

25 tháng 4 2020

Với x > 0 ; y > 0 ,ta giả sử \(\sqrt{x+y}< \sqrt{x}+\sqrt{y}\Leftrightarrow\left(\sqrt{x+y}\right)^2< \left(\sqrt{x}+\sqrt{y}\right)^2\)

\(\Leftrightarrow x+y< x+2\sqrt{x.y}+y\Leftrightarrow2\sqrt{xy}>0\)luôn đúng vì x > 0 ; y > 0 

Vậy \(\sqrt{x+y}< \sqrt{x}+\sqrt{y}\left(đpcm\right)\)

9 tháng 4 2018

\(A\le\left|A\right|=\dfrac{\left|xy+yz+xz\right|}{\left|xyz\right|}\)

Áp dụng: \(\left|a+b+c\right|\le\left|a\right|+\left|b\right|+\left|c\right|\)

\(\left|A\right|\le\dfrac{\left|xy\right|+\left|yz\right|+\left|xz\right|}{\left|xyz\right|}=\dfrac{1}{\left|x\right|}+\dfrac{1}{\left|y\right|}+\dfrac{1}{\left|z\right|}\)

\(\le\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)

Ta có đpcm. Dấu "=" khi \(x=y=z=3\)

9 tháng 4 2018

Thêm 1 hướng suy nghĩ khác
Ta có: \(\left|x\right|\ge3;\left|y\right|\ge3;\left|z\right|\ge3\)

\(\Rightarrow0< \dfrac{1}{\left|x\right|}\le\dfrac{1}{3};0< \dfrac{1}{\left|y\right|}\le\dfrac{1}{3};0< \dfrac{1}{\left|z\right|}\le\dfrac{1}{3}\)

Ta có:

\(A=\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le\dfrac{1}{\left|x\right|}+\dfrac{1}{\left|y\right|}+\dfrac{1}{\left|z\right|}\le\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{3}=1\)

10 tháng 3 2017

Bạn kia sai rồi 

x > 0 ; y > 0 thì chưa chắc \(x\ge1;y\ge1\) được

Mình giải các bạn tham khảo nhé :

\(A=\left(x+1\right)\left(y+1\right)=x\left(y+1\right)+\left(y+1\right)=xy+x+y+1\)

\(=1+x+y+1=2+x+y\)

Ta lại có : \(x+y\ge2\sqrt{xy}=2.1=2\) ( bất đẳng thức cosi )

Dấu "=" xảy ra <=> \(x=y\)

\(\Rightarrow2+x+y\ge2+2=4\) 

\(\Rightarrow A\ge4\) (Đpcm)

9 tháng 3 2017

hiiii| mình chẳng hiểu gì cả sorrycậu nhes

6 tháng 8 2017

Vì x>0 , y>0 nên   \(x=\sqrt{x}^2\) \(y=\sqrt{y}^2\) Ta có :

 \(x\le y\Leftrightarrow\sqrt{x}^2-\sqrt{y}^2\le0\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)\le0\)

Chia hai vế cho  \(\left(\sqrt{x}+\sqrt{y}\right)\ge0\)được  \(\sqrt{x}-\sqrt{y}\le0\Leftrightarrow\sqrt{x}\le\sqrt{y}\)