Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ \(\left[{}\begin{matrix}x< -12\\x>12\end{matrix}\right.\)
- Với \(x< -12\Rightarrow x+\frac{12x}{\sqrt{x^2-144}}=x\left(1+\frac{12}{\sqrt{x^2-144}}\right)< 0< 35\)
\(\Rightarrow\) BPT luôn đúng
- Với \(x>12\), hai vế không âm, bình phương hai vế ta được:
\(x^2+\frac{144x^2}{x^2-144}+24\frac{x^2}{\sqrt{x^2-144}}-1225\le0\)
\(\Leftrightarrow\frac{x^4}{x^2-144}+24\frac{x^2}{\sqrt{x^2-144}}-1225\le0\)
\(\Leftrightarrow\left(\frac{x^2}{\sqrt{x^2-144}}+49\right)\left(\frac{x^2}{\sqrt{x^2-144}}-25\right)\le0\)
\(\Leftrightarrow\frac{x^2}{\sqrt{x^2-144}}-25\le0\)
\(\Leftrightarrow x^2\le25\sqrt{x^2-144}\)
\(\Leftrightarrow x^4-625x^2+90000\le0\)
\(\Leftrightarrow\left(x^2-400\right)\left(x^2-225\right)\le0\)
\(\Leftrightarrow225\le x^2\le400\)
\(\Leftrightarrow15\le x\le20\)
Vậy nghiệm của BPT là \(\left[{}\begin{matrix}x< -12\\15\le x\le20\end{matrix}\right.\)
Ấp dụng bất đẳng thức Bu-nhi -a- cốp-xki :
\(P^2 = (2x + 3y)^2 \leq (2^2+3^2)(x^2+y^2)=13a^2=117 \rightarrow a^2 = 9 \rightarrow a= 3 hoặc -3\)
mình nghĩ đề nó như thế này
\(\sqrt{a^2+b^2}-\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2-\left(b+d^{ }\right)^2}\)
hai zế BĐT ko âm nên bình phương 2 zế ta có
\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+2ac+c^2+b^2+2bd+d^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\left(1\right)\)
Nếu \(ac+bd< 0\)thì BĐT đc c/m
Nêu \(ac+bd\ge0\left(1\right)\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge a^2c^2+b^2d^2+2acbd\)
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2acbd\)
\(\Leftrightarrow a^2d^2+b^2c^2-2acbd\ge0\Leftrightarrow\left(ad-bc\right)^2\ge0\)( luôn đúng )
dấu = xảy ra khi \(ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)