\(x\ge3,y\ge2,z\ge1.CMR\)

\(\frac{xy\sqrt{z-1}+xz\sqrt{y...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2019

\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)

Áp dụng BDT Cô-si với 2 số không âm:

\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)

Vậy.......

7 tháng 3 2018

Áp dụng BĐT AM-GM ta có: 

\(VT=\sqrt{\frac{xy}{z+xy}}+\sqrt{\frac{xz}{y+xz}}+\sqrt{\frac{yz}{x+yz}}\)

\(=\sqrt{\frac{xy}{z\left(x+y+z\right)+xy}}+\sqrt{\frac{xz}{y\left(x+y+z\right)+xz}}+\sqrt{\frac{yz}{x\left(x+y+z\right)+yz}}\)

\(=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\frac{xz}{\left(x+y\right)\left(y+z\right)}}+\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)

\(\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}+\frac{x}{x+y}+\frac{z}{y+z}+\frac{y}{x+y}+\frac{z}{x+z}\right)\)

\(=\frac{1}{2}\left(\frac{x+z}{x+z}+\frac{y+z}{y+z}+\frac{x+y}{x+y}\right)=\frac{3}{2}\)

Dấu "=" <=> \(x=y=z=\frac{1}{3}\)

Ủng hộ và kb với mình ha ^^

6 tháng 3 2018
Từ gt suy ra z=1-x-y Thầy vào sau đó áp dụng AM-GM
3 tháng 6 2019

Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)

\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)

Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\)\(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)

\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)

NV
25 tháng 11 2019

a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:

\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)

\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)

b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)

\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)

\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)

Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)

Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)

\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)

Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

25 tháng 11 2019

Căn bậc hai. Căn bậc ba

NV
6 tháng 3 2020

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(VT=\sum\frac{\sqrt{1+a^6+b^6}}{a^3b^3}\ge\sum\frac{\sqrt{3\sqrt[3]{a^6b^6}}}{a^3b^3}=\sqrt{3}\left(\frac{1}{a^2b^2}+\frac{1}{b^2c^2}+\frac{1}{c^2a^2}\right)\)

\(VT\ge\sqrt{3}.3\sqrt[3]{\frac{1}{a^2b^2.b^2c^2.c^2a^2}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)

27 tháng 5 2020

Đặt \(\hept{\begin{cases}\sqrt{x}=p\\\sqrt{y}=q\\\sqrt{z}=r\end{cases}}\). Khi đó \(\hept{\begin{cases}p+q+r=1\\p,q,r>0\end{cases}}\)

và ta cần chứng minh \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\)

Ta có: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}=\frac{2pq}{\sqrt{\left(1+1+2\right)\left(p^2+q^2+2r^2\right)}}\)

\(\le\frac{2pq}{p+q+2r}\le\frac{1}{2}\left(\frac{pq}{p+r}+\frac{pq}{q+r}\right)\)(Theo BĐT Cauchy-Schwarz và BĐT \(\frac{1}{u}+\frac{1}{v}\ge\frac{4}{u+v}\)) (1)

Hoàn toàn tương tự: \(\frac{qr}{\sqrt{q^2+r^2+2p^2}}\le\frac{1}{2}\left(\frac{qr}{q+p}+\frac{qr}{r+p}\right)\)(2); \(\frac{rp}{\sqrt{r^2+p^2+2q^2}}\le\frac{1}{2}\left(\frac{rp}{r+q}+\frac{rp}{p+q}\right)\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{pq}{\sqrt{p^2+q^2+2r^2}}+\frac{qr}{\sqrt{q^2+r^2+2p^2}}+\frac{rp}{\sqrt{r^2+p^2+2q^2}}\)\(\le\frac{1}{2}\left(\frac{r\left(p+q\right)}{p+q}+\frac{p\left(q+r\right)}{q+r}+\frac{q\left(r+p\right)}{r+p}\right)=\frac{1}{2}\left(p+q+r\right)=\frac{1}{2}\)(Do p + q + r = 1)

Đẳng thức xảy ra khi \(p=q=r=\frac{1}{3}\)hay \(x=y=z=\frac{1}{9}\)

13 tháng 8 2018

ta có : \(C=\dfrac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+2}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2\sqrt{z}}{\sqrt{xyz}+\sqrt{xz}+2\sqrt{z}}\)

\(=\dfrac{\sqrt{x}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{2}{\sqrt{xy}+\sqrt{x}+2}\)

\(=\dfrac{1}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{xyz}}{\sqrt{xyz}+\sqrt{xy}+\sqrt{x}}\)

\(=\dfrac{\sqrt{y}+1}{\sqrt{yz}+\sqrt{y}+1}+\dfrac{\sqrt{yz}}{\sqrt{yz}+\sqrt{y}+1}=\dfrac{\sqrt{yz}+\sqrt{y}+1}{\sqrt{yz}+\sqrt{y}+1}=1\)