Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tá có:
\(\left(x+y\right)^2=3\sqrt{5}-\sqrt{2}=x^2+2xy+y^2.\)
\(\left(x-y\right)^2=3\sqrt{2}-\sqrt{5}=x^2-2xy-y^2\)
\(\Rightarrow\left(x+y\right)^2-\left(x-y\right)^2=4xy=3\sqrt{5}-\sqrt{2}-3\sqrt{2}+\sqrt{5}\)
\(4xy=4\sqrt{5}-4\sqrt{2}\)
\(xy=\sqrt{5}-\sqrt{2}\)
\(y=\frac{1}{9+4\sqrt{5}}=\frac{1}{\left(\sqrt{5}+2\right)^2}\)
\(\Rightarrow N=\frac{1}{\left(\sqrt{5}-2\right)^2}-\frac{3}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}+\frac{2}{9+4\sqrt{5}}\)
\(=\frac{1}{9-4\sqrt{5}}+\frac{2}{9+4\sqrt{5}}-3=\frac{9+4\sqrt{5}+18-8\sqrt{5}}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}-3=24-4\sqrt{5}\)
\(S^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+x^2y^2+1+x^2y^2-1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+x^2y^2-1\)
\(=\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2-1\)
\(=2005^2-1\)
\(\Rightarrow S=\pm\sqrt{2005^2-1}\)
c/
Giả sử \(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}< 2\sqrt[3]{3}\)
\(\Leftrightarrow\sqrt[3]{3+\sqrt[3]{3}}-\sqrt[3]{3}< \sqrt[3]{3}-\sqrt[3]{3-\sqrt[3]{3}}\)
\(\Leftrightarrow\frac{\sqrt[3]{3}}{\sqrt[3]{\left(3+\sqrt[3]{3}\right)^2}+\sqrt[3]{9+3\sqrt[3]{3}}+\sqrt[3]{9}}< \frac{\sqrt[3]{3}}{\sqrt[3]{9}+\sqrt[3]{9-3\sqrt[3]{3}}+\sqrt[3]{\left(3-\sqrt[3]{3}\right)^2}}\)
\(\Leftrightarrow\sqrt[3]{\left(3+\sqrt[3]{3}\right)^2}+\sqrt[3]{9+3\sqrt[3]{3}}+\sqrt[3]{9}>\sqrt[3]{9}+\sqrt[3]{9-3\sqrt[3]{3}}+\sqrt[3]{\left(3-\sqrt[3]{3}\right)^2}\)
\(\Leftrightarrow\sqrt[3]{\left(3+\sqrt[3]{3}\right)^2}+\sqrt[3]{9+3\sqrt[3]{3}}>\sqrt[3]{9-3\sqrt[3]{3}}+\sqrt[3]{\left(3-\sqrt[3]{3}\right)^2}\) (1)
Ta có: \(\left\{{}\begin{matrix}\sqrt[3]{9+3\sqrt[3]{3}}>\sqrt[3]{9-3\sqrt[3]{3}}\\\sqrt[3]{\left(3+\sqrt[3]{3}\right)^2}>\sqrt[3]{\left(3-\sqrt[3]{3}\right)^2}\end{matrix}\right.\)
Nên (1) đúng
Vậy BĐT ban đầu đúng
\(x=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow x^3=18+3x\)
Tương tự co:
\(y^3=6+3y\)
\(\Rightarrow P=18+3x+6+3y-3\left(x+y\right)+2019=2043\)
Có : x+y = 6 => x^2+2xy+y^2 = 36
xy = 3^2-2 = 7 <=> 2xy = 14
<=> x^2+y^2 = 22
=> x^4+2x^2y^2+y^4 = 484
<=> x^4+y^4 = 484 - 2x^2y^2 = 484 - 2.(xy)^2 = 484 - 2.7^2 = 386
Xét : 36 x 386 = (x+y).(x^4+y^4) = x^5+y^5+xy.(x^3+y^3) = x^5+y^5+xy.(x+y).(x^2-xy+y^2) = x^5+y^5+7.6.(22-7) = x^5+y^5+630
=> A = x^5+y^5 = 36 x 386 - 630 = 13266
Tk mk nha