K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

Xét \(p=2\)

\(\Rightarrow x^3=4+1=5\)

\(\Leftrightarrow x=\sqrt[3]{5}\left(ktm\right)\)

Xét \(p>2\Rightarrow p\)lẻ 

Ta thấy \(2p+1\)lẻ với mọi \(p\)

\(\Rightarrow x^3\)lẻ \(\Leftrightarrow x\)lẻ

Đặt \(x=2a+1\)

\(\Rightarrow\left(2a+1\right)^3=2p+1\)

\(\Leftrightarrow8a^3+12a+6a+1=2p+1\)

\(\Leftrightarrow2a\left(4a^2+6a+3\right)=2p\)

\(\Leftrightarrow a\left(4a^2+6a+3\right)=p\)

Mà \(p\)là số nguyên tố 

\(\Rightarrow a\left(4a^2+6a+3\right)=p\Leftrightarrow\orbr{\begin{cases}a=1\\a=p\end{cases}}\)

\(\left(+\right)a=1\Rightarrow1\left(4.1^2+6.1+3\right)=p\)

\(\Leftrightarrow p=13\left(tm\right)\Rightarrow x^3=2.13+1\)

\(\Leftrightarrow x^3=27\Leftrightarrow x=3\left(tm\right)\)

\(\left(+\right)a=p\Rightarrow p\left(4p^2+6p+3\right)=p\)

\(\Leftrightarrow4p^2+6p+3=1\left(p>2\right)\)

\(\Leftrightarrow4p^2+4p+2p+2=0\)

\(\Leftrightarrow\left(4p+2\right)\left(p+1\right)=0\Leftrightarrow\orbr{\begin{cases}4p+2=0\\p+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}p=-\frac{2}{4}\left(ktm\right)\\p=-1\left(ktm\right)\end{cases}}\)

Vậy với p là số nguyên tố thì x = 3

30 tháng 4 2020

Vì p là snt nên 2p+1 là số lẻ. Do đó x3 là một số lẻ và x là số lẻ

Ta đặt x=2k+1 (k thuộc N)

Khi đó 2p+1=2(2k+1)3=8k3+12k2+6k+1

Vậy đặt 2p=8k3+12k2+6k

<=> p=4k3+6k2+3k=k(4k2+6k+3)

Vì p là số nguyên tối nên k=1 do đó x=3

28 tháng 3 2018

4.Nếu\(|x-1|=0\)

thì x = 1.=> lx+2l = 3 và lx+3l = 4.

=>lx-1l+lx+2l+lx+3l=0+3+4=7.

Nếu \(|x+2|=0\)

thì x=-2 =>lx-1l=3 và lx+3l=1.

=>lx-1l+lx+2l+lx+3l=0+3+1=4.

Nếu \(|x+3|=0\)

thì x=-3 =>lx-1l=4 và lx+2l=1.

=>lx-1l+lx+2l+lx+3l=5.

Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0

+) p = 2 

=> 3p2+4= 15 không phải số nguyên tố => loại 

+) p = 3 

=> 2p2+3= 21 không phải SNT => loại 

+) p = 5 

=> 2p2-1= 49 không phải SNT => loại 

+) p = 7 

=> 2p2-1 = 97 

     2p2+3 = 101 

     3p2+4 = 151 

=> thỏa mãn 

+) p>7 

Xét có dạng p = 7k+1, 7k+2, 7k+3, 7k-1, 7k-2, 7k-3 thì không thỏa mãn 

Vậy p = 7 để ... 

Chịu khó đọc, chẳng biết sao ko dùng đc phần kí tự 

24 tháng 1 2018

thầy mới dạy mk xong. có trong đề Hải Dương năm 2014-2015

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:

Với $p$ chẵn thì $p=2$.

$x^3=2p+1=2.2+1=5$ (vô lý do $5$ không là số lập phương)

Do đó $p$ lẻ

$x^3=2p+1$

$\Leftrightarrow 2p=x^3-1=(x-1)(x^2+x+1)$

Vì $x$ lẻ nên $x-1$ chẵn, $x^2+x+1$ lẻ. Do đó:

$x-1=2; x^2+x+1=p$

$\Rightarrow x=3; p=13$