Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=2(x^2+6xy)/(1+2xy+2y^2)
=2(x^2+6xy)/(x^2+2xy+3y^2)
*y=0=>P=2
*y#0:
Chia cả tử và mẫu của P cho y^2.
Đặt x/y=a,ta có:
P=2(a^2+6a)/(a^2+2a+3)
<=>(P-2)a^2+2(P-6)a+3P=0
∆'=(P-6)^2-3P(P-2)
=-P^2-3P+18>=0
<=>(P+6)(P-3)=<0
<=>-6=<P=<3
Vậy maxP=3<=>x/y=3 và x^2+y^2=1<=>x=±3/2;y=±1/2
MinP=-6<=>x/y=-3/2 và x^2+y^2=1<=>x=±1/√13;y=-+2/√13
Đặt \(a=x^2;b=y^2\left(a;b\ge0\right)\)
\(A=\frac{\left(a-b\right)\left(1-ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left|A\right|=\frac{\left|\left(a-b\right)\left(1-ab\right)\right|}{\left(1+a\right)^2\left(1+b^2\right)}\le\frac{\left(a+b\right)\left(1+ab\right)}{\left(1+a\right)^2\left(1+b\right)^2}\)
\(\left(1+a\right)\left(1+b\right)=\left(a+b\right)+\left(1+ab\right)\ge2\sqrt{\left(a+b\right)\left(1+ab\right)}\)
\(\Rightarrow\left(a+1\right)^2\left(b+1\right)^2\ge4\left(a+b\right)\left(1+ab\right)\)
\(\Rightarrow\left|A\right|\le4\)
\(\Rightarrow-4\le A\le4\)
\(A=-4\Leftrightarrow a=0;b=1\Leftrightarrow x=0;y=+1or-1\)
\(A=4\Leftrightarrow a=1;b=0\Leftrightarrow x=+-1;y=0\)
Vậy \(MinA=-4;MaxA=4\)