Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x^2+y^2-6x+18+6y=0
(x-3)^2+(y+3)^2=0
x=3 và y=-3 thay vào biểu thức A bạn sẽ tính dc kq
Hình như đề bài sai đó bạn. \(x^2+y^2+z^2\)=0 nê x=y=z=0, vì sao lại có 2(x+y+z+3/2)=0 được
mk ko vt lại đề
=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0
=>(2x+2y)^2+(x-1)^2+(y+1)^2=0
...... phần này bn tự làm đc
=>x=1,y=-1
thay vào là dc
Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)
=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)
=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\) , \(\left(x-1\right)^2\ge0\forall x\) , \(\left(y+1\right)^2\ge0\forall x\)
=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)
=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)
Thay vào M ta có:
\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)
Câu 1:
1,\(\left(2x+y\right)\left(y-2x\right)+4x^2\)
\(=2xy-4x^2+y^2-2xy+4x^2\)
\(=y^2\)
Vì giá trị biểu thức không phụ thuộc x nên
\(\Rightarrow\) Thay \(y=10\) vào biểu thức,ta có:
\(10^2=100\)
2.
a,\(xy+11x=x\left(y+11\right)\)
b,\(x^2+4y^2+4xy-16\)
\(=\left(x+2y\right)^2-4^2\)
\(=\left(x+2y-4\right)\left(x+2y+4\right)\)
Câu 2:
1,
a,\(2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
Vậy...
b,\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow\left(x^3+27\right)-\left(x^3-2x\right)=15\)
\(\Leftrightarrow x^3+27-x^3+2x=15\)
\(\Leftrightarrow27+2x=15\)
\(\Leftrightarrow2x=12\)
\(\Leftrightarrow x=6\)
Câu 3:
1.\(\dfrac{6x+4}{3x}:\dfrac{2y}{3x}\)
\(=\dfrac{6x+4}{3x}.\dfrac{3x}{2y}\)
\(=\dfrac{6x+4}{2y}\)
\(=\dfrac{2\left(3x+2\right)}{2y}=\dfrac{3x+2}{y}\)
2.\(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\left(\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}-\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9}{x\left(x-3\right)}\right):\dfrac{2x-2}{x}\)
\(=\left(\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\right):\dfrac{2x-2}{x}\)
\(=\dfrac{-6x+18}{x\left(x-3\right)}:\dfrac{2x-2}{x}\)
\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}:\dfrac{2x-2}{x}\)
\(=\dfrac{-6}{x}:\dfrac{2x-2}{x}\)
\(=\dfrac{-6x}{\left(2x-2\right)x}\)
\(=\dfrac{-6}{2\left(x-2\right)}=\dfrac{-3}{x-2}\)
câu 4
Hình bn tự vẽ
a) có AN=NC
MN=ND
mà AC và MD là 2 đường chéo của tứ giác ADCM
==> Tứ giác ADCM là hình bình hành ( dấu hiệu 5)
b) Gỉa sử tứ giác ADCM là hình chữ nhật
==> AC=MD vì là 2 đg chéo HCN (1)
mặt khác có M là trung điểm của AB
N là trung điểm của AC
==>MNlà đường trung bình của tam giác ABC
==> MN song song và = \(\dfrac{1}{2}\) BC
mà MN=ND ==> MN+ND=MD
==>MD song song và = BC(2)
Từ (1) và (2) ==> AC=BC
==>Tam giác ACB cân tại C
Vậy tam giác ABC cân tại C để tứ giác ADCM là HCN
c) theo câu b có MD song song và = BC
==> tứ giác MDCB là hình bình hành ( đpcm)
Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)
Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)
\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)
\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)
\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)
\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)
ta có x2+y2-6x+18+6y=0
⇔(x2-6x+9)+(y2+6y+9)=0
⇔(x-3)2+(y+3)2=0
vì (x-3)2≥0 với mọi x;(y+3)2≥0 với mọi y
⇒ (x-3)2+(y+3)2≥0 với mọi x,y
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\y+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
ta có A=x2017.y2018+x2018.y2017+\(\dfrac{1}{9}y\)
A=\(x^{2017}\cdot y^{2017}\cdot\left(x+y\right)+\dfrac{1}{9}y\)
thay x=3; y=-3 vào A ta có giá trị biểu thức A là
A=\(3^{2017}\cdot\left(-3\right)^{2017}\cdot\left(-3+3\right)+\dfrac{1}{9}\cdot\left(-3\right)\)
A=\(-\dfrac{1}{3}\)
Vậy A=\(-\dfrac{1}{3}\) khi x=3;y=-3
Chúc bạn học tốt
\(x^2-6x+9+y^2+6y+9=0\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\)
Thay vào A:
\(A=x^{2017}.y^{2018}+x^{2018}.y^{2017}+\dfrac{y}{9}=x^{2017}.y^{2017}\left(x+y\right)+\dfrac{y}{9}\)
\(\Rightarrow A=3^{2017}.\left(-3\right)^{2017}\left(3-3\right)+\dfrac{-3}{9}=-\dfrac{1}{3}\)