Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 -(m-1)x - 6 = 0 coi lại đề bài hộ dấu trừ t1 viết thành = à :)
để pt có 3 nghiệm phân biệt khi và chỉ khi \(\Delta>0\)
<=> (m-1)2 +4.6 >0
<=> (m-1)2 +24 >0 ( luôn đúng )
vậy pt lun có 2 nghiệm phân biệt với mọi m
theo hệ thức vi ét ta có
x1+x2 = m-1
x1.x2=-6
A= (x12 -9 )(x22 -4 )
A= (x1.x2)2 -4x12 -9x22 +36
A= (x1.x2 )2 -
đéo biết đê fbài sai hoặc t sai ))
\(\Delta=\left(m-1\right)^2-4\left(-m^2+m-2\right)\)
\(=5m^2-6m+9=5\left(m-\frac{3}{5}\right)^2+\frac{36}{5}>0;\forall m\)
Mặt khác \(-m^2+m-2\ne0;\forall m\Rightarrow\) biểu thức đề bài luôn xác định
\(B=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^3-6\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)\)
Xét \(A=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{\left(m-1\right)^2-2\left(-m^2+m-2\right)}{-m^2+m-2}=\frac{3m^2-4m+5}{-m^2+m-2}\)
\(\Rightarrow-Am^2+Am-2A=3m^2-4m+5\)
\(\Leftrightarrow\left(A+3\right)m^2-\left(A+4\right)m+2A+5=0\)
\(\Delta=\left(A+4\right)^2-4\left(A+3\right)\left(2A+5\right)\ge0\)
\(\Leftrightarrow7A^2+36A+44\le0\Rightarrow-\frac{22}{7}\le A\le-2\)
Thay vào B:
\(B=A^3-6A\) với \(-\frac{22}{7}\le A\le-2\)
\(B=A^2\left(A+2\right)-2\left(A+1\right)\left(A+2\right)+4\)
Do \(A\le-2\Rightarrow\left\{{}\begin{matrix}A+2\le0\\\left(A+1\right)\left(A+2\right)\ge0\end{matrix}\right.\) \(\Rightarrow B\le4\)
\(\Rightarrow B_{max}=4\) khi \(A=-2\) hay \(m=1\)
- Phương trình: \(x^2+\left(m-1\right)x-6=0.\)ở dạng tổng quát: \(ax^2+bx+c=0\)có hệ số \(a=1;b=\left(m-1\right);c=-6\)
- \(x_1\)và \(x_2\)là nghiệm của phương trình trên thì thỏa mãn: (*) \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=1-m\\x_1\cdot x_2=\frac{c}{a}=-6\end{cases}}\)\(\Rightarrow x_1;x_2\)trái dấu
- Ta có \(A=\left(x_1^2-9\right)\cdot\left(x_2^2-4\right)=\left(x_1x_2\right)^2-4x_1^2-9x_2^2+36=\)
- \(=\left(-6\right)^2-\left(4x_1^2+2\cdot2x_1\cdot3x_2+9x_2^2\right)+12x_1x_2+36=72+12\cdot\left(-6\right)-\left(2x_1+3x_2\right)^2\)
- \(=-\left(2x_1+3x_2\right)^2\le0\)
- Vậy, GTLN của A = 0 khi \(2x_1+3x_2=0\Leftrightarrow\frac{x_1}{3}=-\frac{x_2}{2}=P\)thay vào \(x_1\cdot x_2=-6\)ta được \(P^2=1\)
- Nếu \(P=1\)thì \(x_1=3;x_2=-2;\)thay vào \(x_1+x_2=1-m\Leftrightarrow3-2=1-m\Leftrightarrow m=0\)
- Nếu \(P=-1\)thì \(x_1=-3;x_2=2\)thay vào \(x_1+x_2=1-m\Leftrightarrow-3+2=1-m\Leftrightarrow m=2\)
- Vậy có 2 giá trị của m là \(m=0\)và \(m=2\)để A đạt GTLN.
a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)
=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)
b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4
\(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)
ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4
\(\left(m+1\right)x^2-2\left(m-1\right)x+m-3=0\) (1)
a) Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:
\(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-3\right)>0\)
\(\Leftrightarrow\left(m^2-2m+1\right)-\left(m^2-2m-3\right)>0\)
\(\Leftrightarrow4>0\)(luôn đúng)
Vậy phương trình có 2 nghiệm phân biệt với mọi m.
b) Để t nghĩ tí
\(ac=-6< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1x_2=-6\end{matrix}\right.\)
\(B=\left(x_1-3\right)\left(x_1+3\right)\left(x_2-2\right)\left(x_2+2\right)\)
\(=\left(x_1-3\right)\left(x_2-2\right)\left(x_1+3\right)\left(x_2+2\right)\)
\(=\left(x_1x_2-2x_1-3x_2+6\right)\left(x_1x_2+2x_1+3x_2+6\right)\)
\(=-\left(2x_1+3x_2\right)\left(2x_1+3x_2\right)=-\left(2x_1+3x_2\right)^2\le0\)
\(\Rightarrow B_{max}=0\) khi \(2x_1+3x_2=0\)
Kết hợp Viet ta được hệ: \(\left\{{}\begin{matrix}x_1+x_2=1-m\\2x_1+3x_2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=3-3m\\x_2=2m-2\end{matrix}\right.\)
Mà \(x_1x_2=-6\Leftrightarrow\left(3-3m\right)\left(2m-2\right)=-6\)
\(\Leftrightarrow\left(m-1\right)^2=1\Rightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)