Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(x-y=\frac{a}{b}-\frac{c}{d}=\frac{ad-cb}{bd}=\frac{1}{bd}.\) (1)
\(y-z=\frac{c}{d}-\frac{e}{h}=\frac{ch-de}{dh}=\frac{1}{dh}\)(2)
+ Nếu d>0 => (1)>0 và (2)>0 => x>y; y>x => x>y>z
+ Nếu d<0 => (1)<0 và (2)<0 => x<y; y<z => x<y<z
b/
\(m-y=\frac{a+e}{b+h}-\frac{c}{d}=\frac{ad+de-cb-ch}{d\left(b+h\right)}=\frac{\left(ad-cb\right)-\left(ch-de\right)}{d\left(b+h\right)}=\frac{1-1}{d\left(b+h\right)}=0\)
=> m=y
+
cảm ơn bn nha Nguyễn Ngoc Anh Minh mk k cho bn r đó kb vs mk nha
1) \(2^{x+2}-96=2^x\)\(\Leftrightarrow2^{x+2}-2^x=96\)\(\Leftrightarrow2^x\left(2^2-1\right)=96\)
\(\Leftrightarrow3.2^x=96\)\(\Leftrightarrow2^x=32=2^5\)\(\Leftrightarrow x=5\)
Vậy \(x=5\)
2) \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\Rightarrow a=b\), \(b=c\), \(c=a\)\(\Rightarrow a=b=c\)
Câu 1:
\(2^{x+2}-96=2^x\)
\(\Leftrightarrow2^{x+2}-2^x=96\)(chuyển vế nha bạn)
\(\Leftrightarrow2^x.\left(2^2-1\right)=96\)
\(\Leftrightarrow2^x.3=96\Rightarrow2^x=32=\left(+-6\right)^2\)
\(\Rightarrow x=2\)
Câu 2:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a=b.1=b\)và \(b=c.1=c\)và \(c=a.1=a\)
\(\Rightarrow a=b=c\)
Từ đề bai ta có
\(\frac{1a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)
\(\Rightarrow\frac{y+z}{1bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{x+y-z-x}{1ab-ca}=\frac{y-z}{a\left(b-c\right)}\)
Tương tự ta cũng tìm được cái dãy tỷ số đó
\(=\frac{1z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
Từ đây ta có điều phải chứng minh
Ta có:
\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)
\(\Rightarrow\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)
\(\Rightarrow\frac{\left(y+z\right)}{bc}=\frac{\left(z+x\right)}{ac}=\frac{\left(x+y\right)}{ab}\)
\(\Rightarrow\frac{x+y-z-x}{ab-ac}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ac-bc}\)
\(\Rightarrow\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
Đề sai: \(x^2=bc\) phải là \(a^2=bc\)
Ta có: \(\frac{a+b}{a-b}=\frac{c+a}{c-a}=k\)
\(\Rightarrow a+b=k.\left(a-b\right)\Leftrightarrow a+b=ka-kb\)
\(\Rightarrow a-ka=-b-kb\)
\(\Rightarrow a.\left(1-k\right)=-b.\left(1+k\right)\) ( 1)
Ta lại có: \(c+a=k.\left(c-a\right)\Leftrightarrow c+a=kc-ka\)
\(\Rightarrow c-kc=-a-ka\)
\(\Rightarrow c.\left(1-k\right)=-a.\left(1+k\right)\) ( 2)
Từ (1) và (2) \(\Rightarrow\frac{a.\left(1-k\right)}{c.\left(1-k\right)}=\frac{-b.\left(1+k\right)}{-a.\left(1+k\right)}\Leftrightarrow\frac{a}{c}=\frac{b}{a}\)
\(\Rightarrow a^2=bc\left(đpcm\right)\)
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)(Dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
\(k\)nhé !!!