K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Ta đặt \(x^2+2y=k^2\Leftrightarrow2y=k^2-x^2=\left(k-x\right)\left(k+x\right)\) \(\left(k\inℕ\right)\)

Vì k - x và k + x cùng tính chẵn lẻ vả lại 2y chẵn

=> k - x và k + x cùng chẵn => k - x và k + x cùng chia hết cho 2

Mà \(x^2+2y=k^2\Leftrightarrow\hept{\begin{cases}x^2=k^2-2y\\y=\frac{k^2-x^2}{2}\end{cases}}\)

Thay vào ta được: \(x^2+y=k^2-2y+y=k^2+y\)

\(=k^2+\frac{k^2-x^2}{2}=\frac{k^2+x^2}{2}\)

\(=\frac{2k^2+2x^2}{4}=\frac{\left(k^2+2kx+x^2\right)+\left(k^2-2kx+x^2\right)}{4}\)

\(=\frac{\left(k+x\right)^2+\left(k-x\right)^2}{4}=\left(\frac{k+x}{2}\right)^2+\left(\frac{k-x}{2}\right)^2\) là tổng 2 SCP

=> đpcm

22 tháng 11 2017

Ta có:\(n=4x^2y^2-7x+7y=\left(2xy-1\right)^2+4xy-7x+7y-1>\left(2xy-1\right)^2\)

\(n=\left(2xy+1\right)^2-4xy+7y-7x-1< \left(2xy+1\right)^2\)

\(\Rightarrow\left(2xy-1\right)^2< n< \left(2xy+1\right)^2,\)mà \(n\)là số chính phương nên ta có:

\(n=\left(2xy\right)^2\Leftrightarrow4x^2y^2-7x+7y=4x^2y^2\Leftrightarrow x=y\left(đpcm\right)\)

26 tháng 5 2017

đề là \(4x^2y^2-7x+7y\) chứ