\(x^2+2y^2+2xy+3x+3y-4=0\) Tìm Max, Min của A=x+y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

\(x^2+2y^2+2xy+3x+3y-4=0\)

<=> \(x^2+2xy+y^2+3\left(x+y\right)+y^2-4=0\)

<=> \(\left(x+y\right)^2+3\left(x+y\right)-4+y^2=0\)

<=>\(A^2+3A-4+y^2=0\)

<=> (A-1)(A+4)=-y2\(\le0\)

do A-1 <A+4

=> \(\left\{{}\begin{matrix}A-1\le0\\A+4\ge4\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}A\le1\\A\ge-4\end{matrix}\right.\)

<=> \(-4\le A\le1\)

minA xảy ra <=> \(\left\{{}\begin{matrix}y=0\\x+y=-4\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=0\\x=-4\end{matrix}\right.\)(t/m)

maxA xảy ra <=> \(\left\{{}\begin{matrix}y=0\\x+y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\)(t/m)

Vũ Minh TuấnTrần Thanh PhươngLê Thị Thục HiềnBăng Băng 2k6 giúp vs

16 tháng 9 2019

\(x^2-3x-3y+2xy+2y^2-4=0\)

\(\Leftrightarrow\left(x+y+3\right)^2-9\left(x+y+3\right)+y^2+14=0\)

\(\Leftrightarrow P^2-9P+y^2+14=0\)

Ta có: \(0=P^2-9P+y^2+14\ge P^2-9P+14=\left(P-7\right)\left(P-2\right)\)

\(\Leftrightarrow2\le P\le7\)

Vậy...

P/s: Về cơ bản hướng làm là thế, nhưng khi tính toán + biến đổi có thể sai, bạn tự check lại.

16 tháng 9 2019

Dòng kế cuối là:\(\Rightarrow2\le P\le7\) nha!

16 tháng 7 2019

a) \(x^2+2xy+y^2+x+y-2\le0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+x+y-2\le0\)

\(\Leftrightarrow\)\(\left(x+y+\frac{1}{2}\right)^2\le\frac{9}{4}\)

\(\Leftrightarrow\)\(-2\le x+y\le1\)

b) \(x^2+2y^2+2xy-16y-6x+30=0\)

\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)-6\left(x+y\right)=-y^2+10y-30\)

\(\Leftrightarrow\)\(\left(x+y\right)^2-6\left(x+y\right)=-\left(y^2-10y+25\right)-5\)

\(\Leftrightarrow\)\(\left(x+y-3\right)^2=-\left(y-5\right)^2+4\le4\)

\(\Leftrightarrow\)\(1\le x+y\le5\)

30 tháng 7 2019

pt \(\Leftrightarrow\)\(\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}=-y^2+\frac{49}{4}-10\)

\(\Leftrightarrow\)\(\left(x+y+\frac{7}{2}\right)^2=-y^2+\frac{9}{4}\le\frac{9}{4}\)

\(\Leftrightarrow\)\(\frac{-3}{2}\le x+y+\frac{7}{2}\le\frac{3}{2}\)

\(\Leftrightarrow\)\(-4\le x+y+1\le-1\)

Dấu "=" tự xét nhé 

20 tháng 1 2019

\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)

\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)

\(\le2+\frac{4.1006^2}{2012^2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)

\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)

... 

20 tháng 1 2019

cảm ơn bạn nhiều