\(^{x^2+2x-2=0}\) Tính giá trị của biểu thức M=\(x^4+16x+2007\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:
Ta có:

\(M=x^4+16x+2007=x^2(x^2+2x-2)-2x^3+2x^2+16x+2007\)

\(=x^2(x^2+2x-2)-2x(x^2+2x-2)+6x^2+12x+2007\)

\(=x^2(x^2+2x-2)-2x(x^2+2x-2)+6(x^2+2x-2)+2019\)

\(=(x^2-2x+6)(x^2+2x-2)+2019=(x^2-2x+6).0+2019=2019\)

13 tháng 12 2022

x^2+2x-2=0

=>\(\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Nếu \(x=\dfrac{-1+\sqrt{5}}{2}\) thì \(M=\left(\dfrac{-1+\sqrt{5}}{2}\right)^4+16\cdot\dfrac{-1+\sqrt{5}}{2}+2007\)

\(=\left(\dfrac{6-2\sqrt{5}}{4}\right)^2-8+8\sqrt{5}+2007\)

\(=\left(\dfrac{3-\sqrt{5}}{2}\right)^2+1999+8\sqrt{5}\)

\(=\dfrac{14-6\sqrt{5}}{4}+1999+8\sqrt{5}\)

\(=3.5-1.5\sqrt{5}+8\sqrt{5}+1999=2002.5+6.5\sqrt{5}\)

Nếu \(x=\dfrac{-1-\sqrt{5}}{2}\) thì \(M=\left(\dfrac{6+2\sqrt{5}}{4}\right)^2+16\cdot\dfrac{-\sqrt{5}-1}{2}+2007\)

\(=\dfrac{14+6\sqrt{5}}{4}-8\sqrt{5}+8+2007\)

\(=\dfrac{4037}{2}+\dfrac{-13}{2}\sqrt{5}\)

14 tháng 11 2016

1.

a) \(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)=2x^2-8x+x^2+x-2=x^2-7x-2\)

b) \(\left(x-3\right)^2-\left(x-2\right)\left(x^2+2x+4\right)=x^2-6x+9-x^3+8=-x^3+x^2-6x+17\)

2.

a) \(x^2y+xy^2-3x+3y=xy\left(x+y\right)-3\left(x-y\right)=???\)

b) \(x^3+2x^2y+xy^2-16x=x\left(x^2+2xy+y^2-16\right)=x\left[\left(x+y\right)^2-16\right]=\)làm tiếp chắc dễ

3. 

\(\frac{x^4?2x^3+4x^2+2x+3}{x^2+1}\) Giữa x^4 và 2x^3 (vị trí dấu ? là dấu + hay -)

4) \(A=x^2-3x+4=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)

\(A\ge\frac{7}{4}\)

Vậy GTNN của A là 7/4

2 tháng 9 2018

\(2x\left(x-4\right)+\left(x-1\right)\left(x+2\right)\)

\(=2x^2-8x+x^2+2x-x-2\)

\(=3x^2-7x-2\)

hk tốt

4 tháng 9 2016

Ta có  : \(M=x^4-2x^3+3x^2-2x+2\)

\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-2x\right)+2\)

\(=\left(x^2-x\right)^2+2\left(x^2-x\right)+2\)

\(=3^2+2.3+2=9+6+2=17\)

4 tháng 9 2016

\(M=x^4-2x^3+3x^2-2x+2\)

     \(=\left(x^4-x^3\right)-\left(x^3-x^2\right)+\left(2x^2-2x\right)+2\)

     \(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)

     \(=\left(x^2-x\right)\left(x^2-x+2\right)\)

\(M=\left(x^2-x\right)\left(x^2-x+2\right)\)

\(\rightarrow M=3\left(3+2\right)=15\)

2 tháng 8 2015

1/a   A=7-1=48 : 24=2

b.   12-1=0

     B= 2x4-11x3+11x2-16x+5

     B= -9x10

27 tháng 12 2018

\(a,A=4x+2+2x-2-5x-6x^2-44x+2+2x-2-5x-6x^2-4\)

\(=\left(4x+2x-5x-44x+2x-5x\right)-\left(6x^2+6x^2\right)+\left(2-2+2-2-4\right)\)

\(=-46x-12x^2-4\)

Thay \(x=7373\) vào biểu thức A, ta có :

\(-46.7373-12.7373^2-4\)

\(-652672710\)

11 tháng 4 2018
a,(3x-2):4>=(3x+3):6 <=>(18x-12):24>=(12x+12):24 <=>18x-12>=12x+12 <=>6x>=24 <=> 6x:6>=24:6 <=> X>=4 Vậy tập n là {x/x>=4}
5 tháng 6 2020

a) Để giá trị biểu thức 5 – 2x là số dương

<=> 5 – 2x > 0

<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )

\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )

Vậy : \(x< \frac{5}{2}\)

b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:

x + 3 < 4x – 5

<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )

<=> -3x < -8

\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).

Vậy : \(x>\frac{8}{3}\)

c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:

2x + 1 ≥ x + 3

<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).

<=> x ≥ 2.

Vậy x ≥ 2.

d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:

x2 + 1 ≤ (x – 2)2

<=> x2 + 1 ≤ x2 – 4x + 4

<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).

<=> 4x ≤ 3

 \(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )

Vậy : \(x\le\frac{3}{4}\)