Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2-x-1=0\Rightarrow x^2-x=1\Rightarrow\left(x^2-x\right)^3=1\)
\(\Rightarrow x^6-3x^5+3x^4-x^3=1\)
Mặt khác \(x^2-x-1-0\Rightarrow x^2=x+1\)
\(\Rightarrow x^6=\left(x+1\right)^3=x^3+2=3x^2+3x+1\)
\(\Rightarrow P=\frac{1+2017}{1+2017}=1\)
bạn phân tích đa thức thành nhân tử ở tử thức và mẫu thức sao cho chứa nhân tử chung là x2 - x - 1 . Còn lại 2013/2012
Ta có : \(Q=\frac{x^6-3x^5+3x^4-x^3+2020}{x^6-x^3-3x^2-3x+2020}\)
=> \(Q=\frac{\left(x^6-x^5-x^4\right)+\left(-2x^5+2x^4+2x^3\right)+\left(2x^4-2x^3-2x^2\right)+\left(-x^3+x^2+x\right)+\left(x^2-x-1\right)+2021}{\left(x^6-x^5-x^4\right)+\left(x^5-x^4-x^3\right)+\left(2x^4-2x^3-2x^2\right)+\left(2x^3-2x^2-2x\right)+\left(x^2-x-1\right)+2021}\)
=> \(Q=\frac{x^4\left(x^2-x-1\right)-2x^3\left(x^2-x-1\right)+2x^2\left(x^2-x-1\right)-x\left(x^2-x-1\right)+\left(x^2-x-1\right)+2021}{x^4\left(x^2-x-1\right)+x^3\left(x^2-x-1\right)+2x^2\left(x^2-x-1\right)+\left(x^2-x-1\right)+2021}\)
=> \(Q=\frac{x^4.0-2x^3.0+2x^2.0-x.0+0+2021}{x^4.0+x^3.0+2x^2.0+0+2021}\)
=> \(Q=\frac{2021}{2021}=1\)
a) Ta có : x=0 không là nghiệm của phương trình. Chia cả hai vế của phương trình cho \(^{x^2}\) ta có:
\(x^2-2x-1-\frac{2}{x}+\frac{1}{x^2}=0\) \(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)-1=0\) (1)
Đặt \(x+\frac{1}{x}=t\) \(\left(t>2\right)\) hoăc \(\left(t<-2\right)\)\(\Rightarrow\)\(t^2=\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2\)\(\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
Vậy phương trình (1) tương đương với \(t^2+2t-3\)\(\Leftrightarrow\left(t+3\right)\left(t-1\right)=0\)
\(\Leftrightarrow t=1<2\) (không t/m) hoặc \(t=-3>-2\)(t/m)
Ta có :t=-3\(\Rightarrow x+\frac{1}{x}=-3\Leftrightarrow x^2+1=-3x\Leftrightarrow x^2+3x+\frac{9}{4}-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\Leftrightarrow\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow x=\frac{\sqrt{5}-3}{2}\) hoặc \(x=\frac{-\sqrt{5}-3}{2}\)
Vậy phương trình có hai nghiệm x1=\(\frac{\sqrt{5}-3}{2}\) và x2=\(\frac{-\sqrt{5}-3}{2}\)
Chú ý: Phương trình này được gọi là phương trình bậc bốn đối xứng
Có gì sai sót mong bạn thông cảm nha!
Mình mai sẽ giải tiếp 2 phần còn lại....
Nhớ tick cho minh nha bạn.....B-)
1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)
=> pt vô no
2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)
\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)
\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)
\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)
\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)
Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm
Câu 2:
ĐKXĐ: \(x\le3\)
\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)
\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))
\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)
\(\Leftrightarrow36x=-36\Rightarrow x=-1\)
Câu 3:
ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)
\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)
Phương trình vô nghiệm
tick mik đi, mik tick lại