K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

Ta có: \(x^2-4x+1=0\) (1)

Nếu x=0  thay vào phương trình (1) thấy 1=0 vô lí

=> x khác 0

Chia cả hai vế phương trình 1 cho x ta được phương trình:

\(x-4+\frac{1}{x}=0\Leftrightarrow x+\frac{1}{x}=4\)

=> \(\left(x+\frac{1}{x}\right)^2=4^2\Leftrightarrow x^2+\frac{1}{x^2}+2=16\Leftrightarrow x^2+\frac{1}{x^2}=14\)

\(\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}\right)=x^3+\frac{1}{x^3}+x+\frac{1}{x}\)

=> \(4.14=x^3+\frac{1}{x^3}+4\Rightarrow x^3+\frac{1}{x^3}=52\)

Thay vào tính đc P

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)Vì \(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmjVậy x = 1B2, GHPT:...
Đọc tiếp

+Tuấn 10B_2 (T ko biết đánh word nên dùng tạm .V)

GPT: \(\(\sqrt{x+3}+\sqrt[3]{x}=3\)\) (Bài này cách lp 9 dễ t ko giải nữa)

\(\(f\left(x\right)=\sqrt{x+3}+\sqrt[3]{x}=3\)\) là hàm tăng trên tập [-3;\(\(+\infty\)\))

Ta có: Nếu \(\(x>1\Leftrightarrow f\left(x\right)>f\left(1\right)=3\)\)nên pt vô nghiệm

Nếu \(\(-3\le x< 1\Leftrightarrow f\left(x\right)< f\left(1\right)=3\)\)nên pt vô nghuêmj

Vậy x = 1

B2, GHPT: \(\(\hept{\begin{cases}2x^2+3=\left(4x^2-2yx^2\right)\sqrt{3-2y}+\frac{4x^2+1}{x}\\\sqrt{2-\sqrt{3-2y}}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\end{cases}}\)\)

ĐK \(\(\hept{\begin{cases}-\frac{1}{2}\le y\le\frac{3}{2}\\x\ne0\\x\ne-\frac{1}{2}\end{cases}}\)\)

Xét pt (1) \(\(\Leftrightarrow2x^2+3-4x-\frac{1}{x}=x^2\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow-\frac{1}{x^3}+\frac{3}{x^2}-\frac{4}{x}+2=\left(4-2y\right)\sqrt{3-2y}\)\)

\(\(\Leftrightarrow\left(-\frac{1}{x}+1\right)^3+\left(-\frac{1}{x}+1\right)=\left(\sqrt{3-2y}\right)^3+\sqrt{3-2y}\)\)

Xét hàm số \(\(f\left(t\right)=t^3+t\)\)trên R có \(\(f'\left(t\right)=3t^2+1>0\forall t\in R\)\)

Suy ra f(t) đồng biến trên R . Nên \(\(f\left(-\frac{1}{x}+1\right)=f\left(\sqrt{3-2y}\right)\Leftrightarrow-\frac{1}{x}+1=\sqrt{3-2y}\)\)

Thay vào (2) \(\(\sqrt{2-\left(1-\frac{1}{x}\right)}=\frac{\sqrt[3]{2x^2+x^3}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\sqrt{\frac{1}{x}+1}=\frac{\sqrt[3]{x^2\left(x+2\right)}+x+2}{2x+1}\)\)

\(\(\Leftrightarrow\left(2x+1\right)\sqrt{\frac{1}{x}+1}=x+2+\sqrt[3]{x^2\left(x+2\right)}\)\)

\(\(\Leftrightarrow\left(2+\frac{1}{x}\right)\sqrt{1+\frac{1}{x}}=1+\frac{2}{x}+\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow f\left(\sqrt{1+\frac{1}{x}}\right)=f\left(\sqrt[3]{1+\frac{2}{x}}\right)\)\)

\(\(\Leftrightarrow\sqrt{1+\frac{1}{x}}=\sqrt[3]{1+\frac{2}{x}}\)\)

\(\(\Leftrightarrow\left(1+\frac{1}{x}\right)^3=\left(1+\frac{2}{x}\right)^2\)\)

Đặt \(\(\frac{1}{x}=a\)\)

\(\(\Rightarrow Pt:\left(a+1\right)^3=\left(2a+1\right)^2\)\)

Tự làm nốt , mai ra lớp t giảng lại cho ...

3
13 tháng 1 2019

Vãi ạ :))

13 tháng 1 2019

ttpq_Trần Thanh Phương vãi j ?

10 tháng 1 2020

ai giải giúp mik với, mik cần gấp lắm

a,x4-10x2+9=0

=>(x-1)(x3+x2-9x-9)=0

=> (x-1)(x+1)(x-3)(x+3)=0

=>\(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)hoặc\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)

Vậy tập nghiệm cuả pt là S={\(\pm1,\pm3\)}

16 tháng 4 2019

trả lời

h bn tính theo đenta là ra thôi mà

hok tốt

8 tháng 10 2016

Ta có:

x = \(\frac{1}{2}\)\(\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\)

  = \(\frac{1}{2}\)\(\sqrt{\frac{\left(\sqrt{2}-1\right)^2}{1}}\)

  = \(\frac{1}{2}\)(\(\sqrt{2}\)-1)

=> 2x = \(\sqrt{2}\)-1

=> (2x)2= ( \(\sqrt{2}\)-1)2

=> 4x2= 2-2\(\sqrt{2}\)+1

=> 4x2= -2( \(\sqrt{2}\)-1)+1

=> 4x2= -4x +1 => 4x2+4x-1=0

Lại có:

A1= (\(4x^5\)+\(4x^4\)- \(x^3\)+1)19

   = [  x3( 4x2+4x-1) +1]19

   =1

    A2=( \(\sqrt{4x^5+4x^4-5x^3+5x+3}\))3

       = (\(\sqrt{x^3\left(4x^2+4x-1\right)-x\left(4x^2+4x-1\right)+\left(4x^2+4x-1\right)+4}\))3

       = 23=8

  A3= \(\frac{1-\sqrt{2x}}{\sqrt{2x^2+2x}}\)

     = \(\sqrt{2}\)- \(\sqrt{2}\)\(\sqrt{1-\sqrt{2}}\)

Cộng 3 số vào ta được A

6 tháng 10 2016

no biet

NV
20 tháng 4 2019

\(A=\frac{\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\sqrt{4x-1-2\sqrt{4x-1}+1}}{-\left(\sqrt{4x-1}-1\right).y^2\left(x^2+xy+y^2\right)}=\frac{\left(x^2-y^2\right)\sqrt{\left(\sqrt{4x-1}-1\right)^2}}{-\left(\sqrt{4x-1}-1\right).y^2}\)

Do \(x>1\Rightarrow4x-1>1\Rightarrow\sqrt{4x-1}>1\Rightarrow\sqrt{4x-1}-1>0\)

\(\Rightarrow A=\frac{\left(x^2-y^2\right)\left(\sqrt{4x-1}-1\right)}{-\left(\sqrt{4x-1}-1\right).y^2}=\frac{x^2-y^2}{-y^2}=1-\left(\frac{x}{y}\right)^2\)

\(A=-8\Rightarrow1-\left(\frac{x}{y}\right)^2=-8\Rightarrow\left(\frac{x}{y}\right)^2=9\)

Do \(\left\{{}\begin{matrix}x>1\\y< 0\end{matrix}\right.\) \(\Rightarrow\frac{x}{y}< 0\Rightarrow\frac{x}{y}=-3\)