K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 5 2023

Bạn xem lại xem biểu thức cuối viết đúng chưa vậy?

30 tháng 5 2023

đúng rồi bạn ạ! Bạn có thể giải cho mk ko ạ?

DD
31 tháng 5 2021

Để phương trình có hai nghiệm thì \(\Delta'>0\).

\(\Delta'=\left(m-2\right)^2+\left(m-1\right)=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\)

Do đó phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).

Theo Viet: 

\(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+1\end{cases}}\)

\(x_1^2-2x_1x_2+x_2^2+4x_1^2x_2^2=\left(x_1+x_2\right)^2-4x_1x_2+4x_1^2x_2^2\)

\(=4\left(m-2\right)^2+4\left(m-1\right)+4\left(m-1\right)^2=4\left(2m^2-5m+4\right)=4\)

\(\Leftrightarrow2m^2-5m+4=1\)

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=1\end{cases}}\)

Gửi link fb cho mình để mình gửi đáp án cho
9 tháng 3 2019

Phương thảo nhé

21 tháng 5 2020

srtgb6yyyyyyyy

24 tháng 5 2020

\(2018x^2-\left(m-2019\right)x-2020=0\)

Ta có \(\Delta=b^2-4ac\)

             \(=\left[-\left(m-2019\right)\right]^2-4.2018.\left(-2020\right)\)

             \(=\left(m-2019\right)^2+4.2018.2020>0\)( vì \(\left(m-2019\right)^2\ge0\forall x\))

Phương trình có 2 nghiệm \(x_1,x_2\) Áp dụng hệ thức Vi-ét ta có

\(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\left(1\right)\\x_1.x_2=\frac{-2020}{2018}\left(2\right)\end{cases}}\)

Ta có \(\sqrt{x_1^2+2019}-x_2=\sqrt{x_2^2+2019}-x_2\)

\(\Leftrightarrow\sqrt{x_1^2+2019}-x_2+x_2=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow\sqrt{x_1^2+2019}+0=\sqrt{x_2^2+2019}\)

\(\Leftrightarrow x_1^2+2019=x_2^2+2019\)

\(\Leftrightarrow x_1^2-x_2^2=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right).\frac{m-2019}{2018}=0\Rightarrow x_1-x_2=0\left(3\right)\)

Thay (3) vào (!) ta có \(\hept{\begin{cases}x_1+x_2=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x_1=\frac{m-2019}{2018}\\x_1-x_2=0\end{cases}}\)

                                                                                      \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{m-2019}{4036}\\x_2=\frac{m-2019}{4036}\end{cases}}\)

\(\Rightarrow x_1.x_2=\frac{-2020}{2018}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{m-2019}{4036}.\frac{m-2019}{4036}=\frac{-1010}{1009}\)

\(\Leftrightarrow\frac{\left(m-2019\right)^2}{4036^2}=\frac{-1010}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=\frac{4036^2.\left(-1010\right)}{1009}\)

\(\Leftrightarrow\left(m-2019\right)^2=-16305440\left(VL\right)\)

Vậy không có m để thỏa mãn bài toán 

24 tháng 5 2017

Để PT có 2 nghiệm phân biệt:

\(\Delta'=m^2-2\left(m^2-2\right)>0\)

\(< =>4>m^2< =>-2< m< 2\left(1\right)\)

Theo Vi-ét

\(x_1+x_2=-m,x_1x_2=\frac{m^2-2}{2}\)

\(=>A=2x_1x_2+x_1+x_2-4=m^2-2-m-4=m^2-m-6< =4-\left(-2\right)-6=0\)

\(=>\)Max \(A=0\)

Dấu "=" xảy ra khi m=-2

25 tháng 3 2019

Ta có \(\Delta=1-4m+8=9-4m\)

Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow9-4m>0\Leftrightarrow m< \frac{9}{4}\)

Theo hệ thức vi-ét ta có:\(\left\{{}\begin{matrix}a+b=-1\\ab=m-2\end{matrix}\right.\)

\(\Rightarrow a^2+2ab-b=1\)

\(\Leftrightarrow\left(a+b\right)^2-b^2-b=1\)

\(\Leftrightarrow b^2+b=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b=0\Rightarrow a=-1\\b=-1\Rightarrow a=0\end{matrix}\right.\)

\(\Rightarrow m=2\left(tm\right)\)

Vậy ...

Ta có : \(\Delta=1-4\left(m-2\right)=-4m+9\)

Để phương trình có hai nghiệm phân biệt \(\Rightarrow\Delta=-4m+9>0\Rightarrow m< \frac{9}{4}\)

Theo hệ thức vi-et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=x_1+1\\x_1x_2=m-2\end{matrix}\right.\)

Theo đề bài : \(x_1^2+2x_1x_2-x_2=1\)

\(\Leftrightarrow x_1^2+2x_1\left(x_1+1\right)-\left(x_1+1\right)=1\)

\(\Leftrightarrow x_1^2+2x_1^2+2x_1-x_1-1=1\)

\(\Leftrightarrow3x_1^2+x_1-2=0\)

\(\Leftrightarrow\left(3x_1-2\right)\left(x_1+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x_1-2=0\\x_1+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_1=\frac{2}{3}\\x_1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=\frac{5}{3}\\x_2=0\end{matrix}\right.\)

Với \(\left(x_1;x_2\right)=\left(\frac{2}{3};\frac{5}{3}\right)\)

\(\Rightarrow m-2=\frac{10}{9}\Rightarrow m=\frac{28}{9}\left(L\right)\)

Với \(\left(x_1;x_2\right)=\left(-1;0\right)\)

\(\Rightarrow m-2=0\Rightarrow m=2\left(N\right)\)

Vậy \(m=2\)

6 tháng 6 2019

\(x^2+x+m-2=0\)

\(\Delta=1-4m+8=9-4m\)

Để phương trình có 2 no phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow9-4m>0\Leftrightarrow m< \frac{9}{4}\)

Theo Vi ét có:

\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=m-2\end{matrix}\right.\)

Có x1 là no của phg trình\(\Rightarrow x_1^2=2-m-x_1\)

Thay vào ta có:

2-m-x1+2x1x2-x2=1

\(\Leftrightarrow x_1+x_2-2x_1x_2-1+m=0\)

\(\Leftrightarrow-1-2\left(m-2\right)-1+m=0\)

\(\Leftrightarrow-1-2m+4-1+m=0\)

\(\Leftrightarrow m=2\) (thoả mãn)