Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có
OA=OB(gt)
\(\widehat{O}\) là góc chung
Do đó: ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)
b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có
OI là cạnh chung
OB=OA(gt)
Do đó: ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)
⇒IB=IA(hai cạnh tương ứng)
Ta có: IB+ID=BD(do B,I,D thẳng hàng)
IA+IC=AC(do A,I,C thẳng hàng)
mà IB=IA(cmt)
và BD=AC(do ΔAOC=ΔOBD)
nên ID=IC
Xét ΔIDC có ID=IC(cmt)
nên ΔIDC cân tại I(định nghĩa tam giác cân)
c) Ta có: ΔOIB=ΔOIA(cmt)
nên \(\widehat{BIO}=\widehat{AIO}\)(hai góc tương ứng)
mà tia IO nằm giữa hai tia IA,IB
nên IO là tia phân giác của \(\widehat{AIB}\)(đpcm)
d) Ta có: ΔAOC=ΔOBD(cmt)
⇒OC=OD(hai cạnh tương ứng)
Xét ΔOCD có OC=OD(cmt)
nên ΔOCD cân tại O(định nghĩa tam giác cân)
mà OK là đường cao ứng với cạnh CD(IK⊥DC,O∈IK)
nên OK là đường phân giác ứng với cạnh CD
⇒OK là tia phân giác của \(\widehat{COD}\)
hay OK là tia phân giác của \(\widehat{AOB}\)
Ta có: ΔOIB=ΔOIA(cmt)
⇒\(\widehat{IOB}=\widehat{IOA}\)(hai góc tương ứng)
mà tia OI nằm giữa hai tia OA,OB
nên OI là tia phân giác của \(\widehat{AOB}\)
Ta có: OI là tia phân giác của \(\widehat{AOB}\)(cmt)
OK là tia phân giác của \(\widehat{AOB}\)(cmt)
mà OI và OK có điểm chung là O
nên O,I,K thẳng hàng
a) Áp dụng định lí Pi-ta-go cho tam giác vuông AOE và tam giác vuông BOE, ta có:
AE2 = OE2 - OA2
BE2 = OE2 - OB2
mà OE chung, OA = OB (gt)
=>AE = BE
Xét ΔAOE và ΔBOE có:
∠A = ∠B (=900)
AE = BE (cmt)
OA = OB (gt)
=> ΔAOE = ΔBOE (c.g.c)
=> ∠O1 = ∠O2 (2 góc tương ứng) (đpcm)
a) Xét \(\Delta OEA,\Delta OEB\) có :
\(OA=OB\left(gt\right)\)
\(\widehat{OAE}=\widehat{OBE}\left(=90^{^O}\right)\)
OE : Chung
=> \(\Delta OEA=\Delta OEB\left(c.g.c\right)\)
=> \(\widehat{AOE}=\widehat{BOE}\) (2 góc tương ứng)
Do đó : OE là tia phân giác của \(\widehat{xOy}\)
Ta có hình vẽ sau:
O x y M
a) Xét \(\Delta OMB\)và \(\Delta OMA:\)
OM: cạnh chung
OB=OA(gt)
\(\widehat{OBM}=\widehat{OAM}=90^o\)
\(\Rightarrow\Delta OMB=\Delta OMA\left(ch-cgv\right)\)
=> MB=MA( 2 cạnh tương ứng)
=> Đpcm
b) Ta có: \(\Delta OMB=\Delta OMA\)(cm câu a)
=> \(\widehat{BOM}=\widehat{AOM}\)(2 góc tương ứng)
=> OM là tia phân giác của \(\widehat{xOy}\)