Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Nếu (a + b) < 0 thì bất đẳng thức đúng
Với (a + b) \(\ge0\)thì ta có
\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)
\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
b/ Áp dụng BĐT BCS :
\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)
Áp dụng câu a/ :
\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)
\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)
Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9
Chú ý: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\) là ok liền:D
Mấy bạn ơi , cho tớ hỏi:
Luật tính điểm hỏi đáp là gì?
Làm thế nào để câu trả lời của mình đứng đầu tiên trong các câu trả lời?
Ai trả lời nhanh mình tích cho.
ta có \(4\left(a^2+a+2b^2\right)=5\left(a^2+2ab+b^2\right)+3\left(a^2-2ab+b^2\right)\)\(=5\left(a+b\right)^2+3\left(a-b\right)^2\ge5\left(a+b\right)^2\)(vì \(\left(a-b\right)^2\ge0\))
vì a,b dương nên \(2\sqrt{2a^2+ab+2b^2}\ge\sqrt{5}\left(a+b\right)\Leftrightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\left(1\right)\)
dấu "=" xảy ra khi a=b
chứng minh tương tự để có \(\hept{\begin{cases}\sqrt{2b^2+bc+2c^2}\ge\frac{5}{4}\left(b+c\right)\Leftrightarrow b=c\left(2\right)\\\sqrt{2c^2+ca+2a^2}\ge\frac{5}{4}\left(a+c\right)\Leftrightarrow a=c\left(3\right)\end{cases}}\)
cộng các bất đẳng thức (1) (2) và (3) theo vế ta được
\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ac+2a^2}\ge\frac{5}{4}\cdot2\left(a+b+c\right)=2019\sqrt{5}\)
dấu "=" xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2019\end{cases}\Leftrightarrow a=b=c=673}\)
* Ta có:
\(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)
\(\Rightarrow\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)
* Tương tự ta có:
\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\); \(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}}{2}\left(c+a\right)\)
\(\Rightarrow P\ge\frac{\sqrt{5}}{2}\left(a+b\right)+\frac{\sqrt{5}}{2}\left(b+c\right)+\frac{\sqrt{5}}{2}\left(c+a\right)\)
\(=\sqrt{5}\left(a+b+c\right)=2019\sqrt{5}\)
(Dấu "=" xảy ra khi a = b = c = 673)
Vậy \(P_{min}=2019\sqrt{5}\Leftrightarrow a=b=c=673\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{5}{4}\left(a+b\right)^2}=\frac{\sqrt{5}\left(a+b\right)}{2}\)
Tương tự:\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}\left(b+c\right)}{2}\);\(\sqrt{2c^2+ca+2a^2}\ge\frac{\sqrt{5}\left(c+a\right)}{2}\)
Cộng theo vế 3 BĐT trên ta có:\(VT\ge\frac{\sqrt{5}\left(2a+2b+2c\right)}{2}=\sqrt{5}\left(a+b+c\right)=\sqrt{5}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 1:
\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có:
\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)
Cộng theo vế 3 BĐT trên ta có:
\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)
Đẳng thức xảy ra khi \(a=b=c\)
Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2
Bài 2/
\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)
\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)
\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi \(a=b=c=1\)
Ta có : \(\sqrt{2a^2+ab+b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\)
Vì \(\frac{3}{4}\left(a-b\right)^2\ge0\forall a;b\Rightarrow\sqrt{2a^2+ab+b^2}\ge\sqrt{\frac{5}{4}}\left(a+b\right)\)( 1 )
Tương tự , ta có : \(\sqrt{2b^2+bc+c^2}\ge\sqrt{\frac{5}{4}}\left(b+c\right);\sqrt{2c^2+ac+a^2}\ge\sqrt{\frac{5}{4}}\left(a+c\right)\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow P\ge\sqrt{\frac{5}{4}}.2\left(a+b+c\right)=\sqrt{5}\left(a+b+c\right)\)
Áp dụng BĐT phụ \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\) , ta có :
\(P\ge\sqrt{5}.\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2}{3}=\frac{\sqrt{5}}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{9}\)
Lời giải:
Áp dụng BĐT AM-GM dạng $x^2+y^2\geq \frac{(x+y)^2}{2}$ ta có:
\(2a^2+ab+2b^2=\frac{4a^2+2ab+4b^2}{2}=\frac{(a+b)^2+3(a^2+b^2)}{2}\geq \frac{(a+b)^2+\frac{3}{2}(a+b)^2}{2}=\frac{5}{4}(a+b)^2\)
\(\Rightarrow \sqrt{2a^2+ab+2b^2}\geq \frac{\sqrt{5}}{2}(a+b)\)
Hoàn toàn tương tự:
\( \sqrt{2b^2+bc+2c^2}\geq \frac{\sqrt{5}}{2}(b+c); \sqrt{2c^2+ac+2a^2}\geq \frac{\sqrt{5}}{2}(a+c)\)
Cộng theo vế:
\(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\geq \sqrt{5}(a+b+c)=\sqrt{5}\)
Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Đề sai phải là \(\sqrt{2b^2+bc+2c^2}\)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{5}{4}}\left(a+b\right)\)
CMTT, có: \(\sqrt{2b^2+bc+2c^2}\ge\sqrt{\frac{5}{4}}\left(b+c\right)\)
\(\sqrt{2c^2+ca+2a^2}\ge\sqrt{\frac{5}{4}}\left(c+a\right)\)
\(\Rightarrow P\ge\sqrt{5}\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=\frac{\sqrt{5}}{3}\)
Dấu "=" xảy ra khi a=b=c=\(\frac{1}{9}\)