Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}=\sqrt{11}-\sqrt{5}\)
suy ra a=11;b=5
suy ra a+b=11+5=16
a) \(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\sqrt{7.55.35.11}=\sqrt{7.5.11.5.7.11}=\sqrt{\left(5.7.11\right)^2}\)
\(=5.7.11=385\)
b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{\sqrt{144}}{23}.\frac{23}{\sqrt{16}}=\frac{\sqrt{144}}{\sqrt{16}}=\sqrt{\frac{144}{16}}=\sqrt{9}=3\)
c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{5}\)
d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)
a)\(\sqrt{7}.\sqrt{55}.\sqrt{35}.\sqrt{11}=\left(\sqrt{7}.\sqrt{355}\right).\left(\sqrt{35}.\sqrt{11}\right)=\sqrt{385}.\sqrt{385}=385\)
b) \(\frac{\sqrt{144}}{23}:\frac{\sqrt{16}}{23}=\frac{12}{23}.\frac{23}{4}=3\)
c) \(\frac{\sqrt{5}}{\sqrt{125}}=\sqrt{\frac{5}{125}}=\sqrt{\frac{1}{25}}=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}\)
d) \(\frac{\sqrt{135}}{\sqrt{15}}=\sqrt{\frac{135}{15}}=\sqrt{9}=3\)
\(\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
=\(\sqrt{11}-\sqrt{5}\)
=> a=11 và b=5
=> a-b=6
a) Ta có: \(\sqrt{14-2\sqrt{33}}\)
\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{3}\right|\)
\(=\sqrt{11}-\sqrt{3}\)(Vì \(\sqrt{11}>\sqrt{3}\))
b) Ta có: \(\sqrt{12-2\sqrt{35}}\)
\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{7}-\sqrt{5}\right|\)
\(=\sqrt{7}-\sqrt{5}\)(Vì \(\sqrt{7}>\sqrt{5}\))
c) Ta có: \(\sqrt{16-2\sqrt{55}}\)
\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)
\(=\left|\sqrt{11}-\sqrt{5}\right|\)
\(=\sqrt{11}-\sqrt{5}\)(Vì \(\sqrt{11}>\sqrt{5}\))
d) Ta có: \(\sqrt{14-6\sqrt{5}}\)
\(=\sqrt{9-2\cdot3\cdot\sqrt{5}+5}\)
\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)
\(=\left|3-\sqrt{5}\right|\)
\(=3-\sqrt{5}\)(Vì \(3>\sqrt{5}\))
e) Ta có: \(\sqrt{17-12\sqrt{2}}\)
\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)
\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)
\(=\left|3-2\sqrt{2}\right|\)
\(=3-2\sqrt{2}\)(Vì \(3>2\sqrt{2}\))
C1: Bình phương 2 vế ta có: \(55-6\sqrt{6}=\left(a+b\sqrt{6}\right)^2\)
<=> \(55-6\sqrt{6}=a^2 +6b^2+2ab\sqrt{6}\)
=> a2 + 6b2 = 55 và 2ab = - 6
=> a2 + 6b2 = 55 (1) và ab = -3 => a = -3/b (2)
thế (2) vào (1) ta được : \(\left(-\frac{3}{b}\right)^2+6b^2=55\) => \(9+6b^4=55b^2\)
=> 6b4 - 55b2 + 9 = 0 => 6b4 - 54b2 - b2 + 9 =0 <=> 6b2.(b2 - 9) - (b2 - 9) = 0 <=> (6b2 - 1).(b2 - 9 ) = 0
<=> b2 = 1/6 (Loại; vì b nguyên ) hoặc b2 = 9
+) b2 = 9 => a2 = 1 => a = 1 hoặc - 1 ; b = 3 hoặc - 3
Do \(a+b\sqrt{6}\) > 0 và a; b trái dấu nên a = -1; b = 3 => a+ b = 2
Vậy a + b = 2
C2: \(\sqrt{55-6\sqrt{6}}=\sqrt{\left(3\sqrt{6}\right)^2-2.3\sqrt{6}.1+1}=\sqrt{\left(3\sqrt{6}-1\right)^2}\)
= \(\left|3\sqrt{6}-1\right|=3\sqrt{6}-1\)
=> a = -1; b = 3 => a + b = 2
\(\sqrt{a}-\sqrt{b}=\sqrt{16-2\sqrt{55}}=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}=\sqrt{11}-\sqrt{5}\Rightarrow a-b=6\)