\(\)\(A=\left(3x-2y\right)^2+\left(y-2\right)\)

tìm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: |3x+2y|+|4y-1|<=0

=>3x+2y=0 và 4y-1=0

=>y=1/4 và x=-1/6

b: |x+y-7|+|xy-10|<=0

=>x+y-7=0 và xy-10=0

=>x+y=7 và xy=10

hay \(\left(x,y\right)\in\left\{\left(2;5\right);\left(5;2\right)\right\}\)

c: |x-y-2|+|y+3|=0

=>x-y-2=0 và y+3=0

=>y=-3 và x-y=2

=>y=-3 và x=2+y=2-3=-1

23 tháng 1 2018

a) \(=12+43y-13-36x+105y-45+165x-285y+255\)

\(=-137y+209+129x\)

tương tự

bài 2 

a) \(\left|16-3x\right|=-39+231\)

\(\left|16-3x\right|=192\)

đến đây xét 2 trường hợp

b) \(\left|6-2x\right|+5=3x-4\)

\(\left|6-2x\right|=3x-4-5\)

\(\left|6-2x\right|=3x-9\)

\(\Rightarrow\orbr{\begin{cases}6-2x=3x-9\\6-2x=9-3x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}-5x=-15\\x=3\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=3\end{cases}}\Rightarrow x=3\)

vậy...

mk làm mẫu mấy bài thôi, còn lại bạn suy nghĩ rồi làm 

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

30 tháng 3 2017

cho vài k đi bà con ơi

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

17 tháng 1 2019

Mk chỉ làm một ý các câu còn lại bn làm tương tự nha:

a) (x+5).(y-3)=0

Vì x,y thuộc Z nên x+5 thuộc z và y-3 thuộc Z

Vì (x+5).(y-3)=0

=> x+5=0 hoặc y-3=0

(+) x+5=0

x=0-5

x=-5

(+) y-3=0

y=0+3

y=3

Vậy x=-5 và y thuộc Z

hoặc y=3 và x thuộc Z

Nhớ tick cho mk nhé Kim Taehyungie.Dạng này mấy hôm trước mk mới hok nên đúng 100% đấy.Cô mk dạy y hệt như thế này lunhiha

17 tháng 1 2019

Riên cái câu a đấy thì khác vs 3 câu còn lại nhé nên mk sẽ làm giúp cậu 1 câu còn 2 câu cậu tự làm như câu này nhé:

B) (x-7).(2+y)=13

Vì x,y thuộc Z nên x-7 thuộc Z và 2+y thuộc Z

Vì (x-7).(2+y)=13

=> x-7 thuộc Ư(13)

Ta có Ư(13)={1;13;-1;-13) (tại sao lại có -1 và -13 vì x thuộc z nhé)

Do đó: x-7 thuộc{1;13;-1;-13}

Ta có bảng sau:Bn tự kẻ ra và làm nhé.Cứ thay x vào rồi tìm như bình thường nhé

29 tháng 7 2018

Bài 3: A=2018-|x+2019|. Vì |x+2019|\(\ge\)0 nên -|x+2019|\(\le\)0=>2018-|x+2019|\(\le\) 2. Vậy A có GTLN = 2 khi x+2019=0 hay x=-2019. B=-10-\(\left|2x-\dfrac{1}{1009}\right|\). Vì \(\left|2x-\dfrac{1}{1009}\right|\ge0\Rightarrow-\left|2x-\dfrac{1}{1009}\right|\le0\Rightarrow-10-\left|2x-\dfrac{1}{1009}\right|\le-10\). Vậy B có GTLN = -10 khi 2x-\(\dfrac{1}{1009}=0\) => \(2x=\dfrac{1}{1009}\Rightarrow x=\dfrac{1}{1009}:2=\dfrac{1}{2018}\)

29 tháng 7 2018

Bài 2: A=\(\left|5x+1\right|-\dfrac{3}{8}\). Vì \(\left|5x+1\right|\ge0\Rightarrow\left|5x+1\right|-\dfrac{3}{8}\ge\dfrac{-3}{8}\). Vậy A có GTNN = \(\dfrac{-3}{8}\) khi 5x+1= 0=> 5x= -1=> x = \(\dfrac{-1}{5}\). B=\(\left|2-\dfrac{1}{6}x\right|+0,25\) , vì \(\left|2-\dfrac{1}{6}x\right|\ge0\Rightarrow\left|2-\dfrac{1}{6}x\right|+0,25\ge0,25\) . Vậy B có GTNN = 0,25 khi \(2-\dfrac{1}{6}x=0\Rightarrow\dfrac{x}{6}=2\Rightarrow x=2.6=12\)

7 tháng 6 2019

\(a,\)\(\left(3x-2\right)\left(2y-3\right)=1\)

\(\Rightarrow\)Trường hợp 1 : 

\(\hept{\begin{cases}3x-2=1\\2y-3=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

\(\Rightarrow\)Trường hợp 2 :

\(\hept{\begin{cases}3x-2=-1\\2y-3=-1\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=1\end{cases}}}\)

Vậy ....

7 tháng 6 2019

#)Giải :

\(b,\left(x+1\right).\left(2y-1\right)=12\)

\(\left(2y-2\right)y-x-13=0\)

\(2\left(x+1\right)=0\)

\(2x=-2\Rightarrow x=-1\)

\(2y-1=0\Rightarrow2y=1\Rightarrow y=\frac{1}{2}\)