Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 5 B A C E D
a ) Xét \(\Delta ABC\)vuông tại A (gt) có :
\(AB^2+AC^2=BC^2\)( định lí Py - ta - go )
\(\Rightarrow3^2+AC^2=5^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=25-9\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\) ( vì AC > 0 )
b ) Xét 2 \(\Delta\)vuông ABE và DBE có :
\(\widehat{BAE}=\widehat{BDE}=90^0\left(gt\right)\)
\(AB=DB\left(gt\right)\)
BE : cạnh chung
Suy ra \(\Delta ABE=\Delta DBE\) ( cạnh góc vuông - góc nhọn kề )
\(\Rightarrow\widehat{ABE}=\widehat{DBE}\)( 2góc tương ứng )
\(\Rightarrow BE\)là tia phân giác của \(\widehat{ABD}\)
Hay BE là tia phân giác của \(\widehat{ABC}\)
c ) Theo câu b ) ta có : \(\Delta ABE=\Delta DBE.\)
\(\Rightarrow AE=DE\)( 2 cạnh tương ứng )
+ Xét \(\Delta DEC\)vuông tại D (gt) có :
Cạnh huyền EC là cạnh lớn nhất ( tính chất tam giác vuông )
\(\Rightarrow EC>DE\)
Mà \(DE=AE\left(cmt\right)\)
\(\Rightarrow EC>AE\)
Hay \(AE< EC\)
d ) Vì \(AB=DB\left(gt\right)\)
\(\Rightarrow B\)thuộc đường trung trực của AD ( 1)
+ Vì \(AE=DE\left(cmt\right)\)
\(\Rightarrow E\)thuộc đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD ( đpcm)
Chúc bạn học tốt !!!
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Bạn tự vẽ hình nhé
a) Xét tam giác ADE và tam giác ACE có:
AD = AC ( gt )
ED = EC ( E là trung điểm DC )
AE là cạnh chung
=> Tam giác ADE = tam giác ACE ( c,c,c )
b) Vì tam giác ADE = tam giác ACE ( c/m trên )
=> Góc AED = góc AEC ( 2 góc tương ứng )
Xét tam giác DIE và tam giác CIE có:
ED = EC ( E là trung điểm DC )
Góc AED = góc AEC ( c/m trên )
EI là cạnh chung
=> Tam giác DIE = tam giác CIE ( c.g.c )
=> DI = CI ( 2 cạnh tương ứng )
Bn xem lại đề đi nha