Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo nhị thức Newton:
$C^k_{2016}$ chính là hệ số của $x^k$ trong khai triển $(x+1)^{2016}(*)$
Lại có:
$(x+1)^{2016}=(x+1)^5.(x+1)^{2011}$
\(=(\sum \limits_{i=0}^5C^i_5x^i)(\sum \limits_{j=0}^{2011}C^i_{2011}x^j)\)
Hệ số $x^k$ trong khai triển này tương ứng với $0\leq i\leq 5; 0\leq j\leq 2011$ thỏa mãn $i+j=k$
Hay hệ số của $x^k$ trong khai triển $(x+1)^{2016}$ là:
$C^0_5.C^k_{2011}+C^1_5.C^{k-1}_{2011}+C^2_5C^{k-2}_{2011}+C^3_5.C^{k-3}_{2011}+C^4_5.C^{k-4}_{2011}+C^5_5.C^{k-5}_{2011}(**)$
Từ $(*); (**)$ ta có đpcm.
Xét khai triển:
\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+C_n^3x^3+...+C_n^nx^n\)
Đạo hàm 2 vế:
\(n\left(1+x\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)
Thay \(x=1\) và \(n=2017\) vào ta được:
\(2017.2^{2016}=C_{2017^1}+2C_{2017}^2+3C_{2017}^3+...+2017.C_{2017}^{2017}\)
Ta có:
\(\left(1+1\right)^{40}=C_{40}^0+C_{40}^1+...+C_{40}^{39}+C_{40}^{40}\)
\(\left(1-1\right)^{40}=C_{40}^0-C_{40}^1+...-C_{40}^{39}+C_{40}^{40}\)
Trừ vế cho vế:
\(2^{40}=2\left(C_{40}^1+C_{40}^3+...+C_{40}^{39}\right)\)
\(\Rightarrow S=2^{39}\)
Xét khai triển:
\(\left(1+x\right)^{2017}=C_{2017}^0+xC_{2017}^1+x^2C_{2017}^2+...+x^{2017}C_{2017}^{2017}\)
Lấy tích phân 2 vế:
\(\int\limits^1_0\left(1+x\right)^{2017}=\int\limits^1_0\left(C_{2017}^0+xC_{2017}^1+...+x^{2017}C_{2017}^{2017}\right)\)
\(\Leftrightarrow\dfrac{2^{2018}-1}{2018}=C_{2017}^0+\dfrac{1}{2}C_{2017}^1+...+\dfrac{1}{2018}C_{2017}^{2017}\)
Vậy \(S=\dfrac{2^{2018}-1}{2018}\)
Đề thế này thì không thể hiểu được.
Em sử dụng công cụ soạn thảo toán học để đăng lại đề nhé, nó ở đây:
Mũ thì bấm "^" là được
Còn kí hiêu tổ hợp kiểu \(C_n^k\) thì ở đây:
Sau đó chọn
Hoặc đơn giản hơn thì vào chỗ gõ công thức (biểu tượng tổng sigma nói ở trên), sau đó bấm C, rồi shift _, bấm tiếp mũi tên sang phải ở bàn phím, rồi shift ^, tiếp tục mũi tên sang phâir
Xét khai triển:
\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)
Đạo hàm 2 vế:
\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)
\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)
Cho \(x=-1\) ta được:
\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)
\(\Rightarrow2n+1=2019\Rightarrow n=1009\)
Gọi \(A=C_{2016}^0+C_{2016}^1+C_{2016}^2+...+C_{2016}^{2016}\)
\(=2^{2016}\) (HỆ QUẢ CỦA NHỊ THỨC NIUTON)
\(\Rightarrow\) \(S=2015+\left(A-C_{2016}^0-C_{2016}^1\right)\)
\(=2015+2^{2016}-1-2016\)
\(=2^{2016}-2\)