K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2021

Gọi \(A=C_{2016}^0+C_{2016}^1+C_{2016}^2+...+C_{2016}^{2016}\)

          \(=2^{2016}\)  (HỆ QUẢ CỦA NHỊ THỨC NIUTON)

\(\Rightarrow\) \(S=2015+\left(A-C_{2016}^0-C_{2016}^1\right)\)

        \(=2015+2^{2016}-1-2016\)

        \(=2^{2016}-2\)

AH
Akai Haruma
Giáo viên
18 tháng 3 2021

Lời giải:

Theo nhị thức Newton:

$C^k_{2016}$ chính là hệ số của $x^k$ trong khai triển $(x+1)^{2016}(*)$

Lại có:

$(x+1)^{2016}=(x+1)^5.(x+1)^{2011}$

\(=(\sum \limits_{i=0}^5C^i_5x^i)(\sum \limits_{j=0}^{2011}C^i_{2011}x^j)\)

Hệ số $x^k$ trong khai triển này tương ứng với $0\leq i\leq 5; 0\leq j\leq 2011$ thỏa mãn $i+j=k$

Hay hệ số của $x^k$ trong khai triển $(x+1)^{2016}$ là:

$C^0_5.C^k_{2011}+C^1_5.C^{k-1}_{2011}+C^2_5C^{k-2}_{2011}+C^3_5.C^{k-3}_{2011}+C^4_5.C^{k-4}_{2011}+C^5_5.C^{k-5}_{2011}(**)$

Từ $(*); (**)$ ta có đpcm.

NV
20 tháng 7 2020

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(1+x\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\)\(n=2017\) vào ta được:

\(2017.2^{2016}=C_{2017^1}+2C_{2017}^2+3C_{2017}^3+...+2017.C_{2017}^{2017}\)

NV
31 tháng 7 2020

Ta có:

\(\left(1+1\right)^{40}=C_{40}^0+C_{40}^1+...+C_{40}^{39}+C_{40}^{40}\)

\(\left(1-1\right)^{40}=C_{40}^0-C_{40}^1+...-C_{40}^{39}+C_{40}^{40}\)

Trừ vế cho vế:

\(2^{40}=2\left(C_{40}^1+C_{40}^3+...+C_{40}^{39}\right)\)

\(\Rightarrow S=2^{39}\)

31 tháng 7 2020

Nguyễn Việt Lâm giúp mk vs >>

NV
23 tháng 11 2021

Xét khai triển:

\(\left(1+x\right)^{2017}=C_{2017}^0+xC_{2017}^1+x^2C_{2017}^2+...+x^{2017}C_{2017}^{2017}\)

Lấy tích phân 2 vế:

\(\int\limits^1_0\left(1+x\right)^{2017}=\int\limits^1_0\left(C_{2017}^0+xC_{2017}^1+...+x^{2017}C_{2017}^{2017}\right)\)

\(\Leftrightarrow\dfrac{2^{2018}-1}{2018}=C_{2017}^0+\dfrac{1}{2}C_{2017}^1+...+\dfrac{1}{2018}C_{2017}^{2017}\)

Vậy \(S=\dfrac{2^{2018}-1}{2018}\)

NV
2 tháng 11 2021

Đề thế này thì không thể hiểu được.

Em sử dụng công cụ soạn thảo toán học để đăng lại đề nhé, nó ở đây:

undefined

Mũ thì bấm "^" là được

Còn kí hiêu tổ hợp kiểu \(C_n^k\) thì ở đây:

undefined

Sau đó chọn

undefined

Hoặc đơn giản hơn thì vào chỗ gõ công thức (biểu tượng tổng sigma nói ở trên), sau đó bấm C, rồi shift _, bấm tiếp mũi tên sang phải ở bàn phím, rồi shift ^, tiếp tục mũi tên sang phâir

2 tháng 11 2021

S= 2nC0n + 2n-2 Cn-2n +2n-4 Cnn-4 +...+Cnn

14 tháng 9 2016

thanks nha!!

NV
22 tháng 12 2020

Xét khai triển:

\(\left(1+2x\right)^{2n+1}=C_{2n+1}^0+C_{2n+1}^1.2x+C_{2n+1}^2\left(2x\right)^2+...+C_{2n+1}^{2n+1}\left(2x\right)^{2n+1}\)

Đạo hàm 2 vế:

\(2\left(2n+1\right)\left(1+2x\right)^{2n}=2C_{2n+1}^1+2^2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n+1}C_{2n+1}^{2n+1}x^{2n}\)

\(\Leftrightarrow\left(2n+1\right)\left(1+2x\right)^{2n}=C_{2n+1}^1+2C_{2n+1}^2x+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}x^{2n}\)

Cho \(x=-1\) ta được:

\(2n+1=C_{2n+1}^1-2C_{2n+1}^2+...+\left(2n+1\right)2^{2n}C_{2n+1}^{2n+1}\)

\(\Rightarrow2n+1=2019\Rightarrow n=1009\)