Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét: p \(\ne\)3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp
\(\Rightarrow\)phải có 1 số chia hết cho 3.
8p -1 và 8p > 3 không chia hết cho 3
\(\Rightarrow\) 8p + 1 chia hết cho 3 và > 3
\(\Rightarrow\) 8p + 1 là hợp số
+ Nếu p = 3 thì 8p+1 = 8.3.+1 = 25
- p khác 3 vì p là số nguyên tố
=) p có 2 dạng: 3k+1, 3k+2
- Với p = 3k+ 1 =) 8p + 1 =8 (3k+1 ) + 1
= (24k+9) chia hết cho 3
Vì 8p+1 >3 =) 8p+1 là hợp số
Với p = 3k+2 =) 8p-1 = 8(3k+2) -1
= (24k+ 15 )
= 3 (8k+2) chia hết cho 3
Mà 8p - 1 là số nguyên tố và 8p-1 > 3
=) vô lý
=) p = 3k+2 (loại)
Vậy 8p+ 1 là hợp số
Số 8 nhân bất kì cho số nào cũng là một số chẵn
Vậy chắc chắn chia hết cho 2
5% là chia hết cho 4, 5 ,6, 8 ..mình cũng ko chả biết nhiều đâu
Ta có : 8p - 1 = số lẻ . Vậy : 8p : hết 2;4;5;6;8...
1 : hết 1
=> { 8p -1 } : hết cho chắc chắn là một số bất kì nào đó . VD :
8.5 -1 = 15 : 3 = 6 .
Vậy nên 8p - 1 là hợp số
câu 2:
p là 1 số nguyên tố (p>3),
do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
nhưng do p +4 là số nguyên tố (3k+2+4=3k+6 \(⋮\)3) nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
câu 3:
Nếu p= 2 => 8p - 1 = 16 - 1= 15 là hợp số (loại)
Nếu p = 3=> 8p - 1 =24 - 1 = 23 là số nguyên tố 8p + 1 = 25 là hợp số
Nếu p > 3 => p có dạng 3K+1 hoặc 3K+2
Nếu p = 3K + 2 =>p = 24K + 16 - 1 = 24K + 15 thỏa mãn 3 và là hợp số (thỏa mãn điều kiện)
=> p = 3K + 1 => 8p + 1 = 24K +8 + 1 = 24K + 9 thỏa mãn 3 , là hợp số
Giả sử p là 1 số nguyên tố > 3, do p không chia hết cho 3 nên p có dạng là
3k + 1 hoặc 3k + 2
ta có
p = 3k + 2 suy ra p + 4 = 3k + 2 + 4 = 3k + 6 = 3.(k+2)
vì 3 chia hết cho 3 nên 3.(k+2) chia hết cho 3 nên p +4 là hợp số (1)
nếu p = 3k +1 suy ra p + 8 = 3k+1+8 =3k+9 =3.(k+3)
vì 3 chia hết cho 3 nên 3.(k+3) chia hết cho 3 nên p +8 là hợp số (2)
từ (1) và (2) suy ra p và p+4 là SNT (p>3) thì p+8 là HS
Vậy .................
Xét p = 2 => 8p - 1 = 16 - 1 = 15 ( hợp số , loại )
Xét p = 3 => 8p - 1 = 24 - 1 = 23 ( số nguyên tố )
=> 8p + 1 = 24 + 1 = 25 ( hợp số )
Xét p > 3 , vì p là số nguyên tố => p có 2 dạng 3k + 1 và 3k + 2
- Với p = 3k + 1 => 8p - 1 = 8 . ( 3k + 1 ) - 1 = 8 . 3k + 8 - 1 = 3 . 8k + 7
=> 8p + 1 = 8 . ( 3k + 1 ) = 8 . 3k + 8 + 1 = 3 . 8k + 9 = 3k . ( 8k + 3 ) là hợp số
- Với p = 3k + 2 => 8p - 1 = 8 . ( 3k + 2 ) - 1 = 8 . 3k + 15 = 3 . ( 8k + 5 ) ( hợp số , loại )
Vậy với p là số nguyên tố thì 8p + 1 là hợp số
Xét p = 2 => 8p - 1 = 16 - 1 = 15 ( hợp số , loại )
Xét p = 3 => 8p - 1 = 24 - 1 = 23 ( số nguyên tố )
=> 8p + 1 = 24 + 1 = 25 ( hợp số )
Xét p > 3 , vì p là số nguyên tố => p có 2 dạng 3k + 1 và 3k + 2
- Với p = 3k + 1 => 8p - 1 = 8 . ( 3k + 1 ) - 1 = 8 . 3k + 8 - 1 = 3 . 8k + 7
=> 8p + 1 = 8 . ( 3k + 1 ) = 8 . 3k + 8 + 1 = 3 . 8k + 9 = 3k . ( 8k + 3 ) là hợp số
- Với p = 3k + 2 => 8p - 1 = 8 . ( 3k + 2 ) - 1 = 8 . 3k + 15 = 3 . ( 8k + 5 ) ( hợp số , loại )
Vậy với p là số nguyên tố thì 8p + 1 là hợp số
Nếu p = 3k hay p = 3 thì 8p-1 = 23 là số nguyên tố. 8p+1 = 25 là hợp số.
Nếu p = 3k+1 thì 8p +1 = 8(3k+1) + 1 = 24k + 9 là hợp số.
Nếu p = 3k + 2 thì 8p -1 = 8(3k+2 ) - 1 = 24k + 15 là hợp số không thể là số nguyên tố.
Bài toán được chứng minh.
Xét p dưới dạng : 3k (khi đó p=3), 3k+1,3k+2(k∈N).
Dạng thứ ba không thỏa mãn đề bài (vì khi đó 8p−1 là hợp số), hai dạng trên đều cho 8p+1 là hợp số.