Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
;))) tớ nhớ dạng RGBT căn bậc 3 lớp 9 nhì :)))????
\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{\sqrt{x}}{x+\sqrt{x+1}}\right).\left(\frac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\frac{2x+1-\sqrt{x}\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left[\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{1+\sqrt{x}}-\sqrt{x}\right]\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x+1}\right)}.\left(1-2\sqrt{x}+x\right)\)
\(=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
a/ \(\frac{2x^3}{4x^7}=\frac{1}{2x^4}\) với ĐKXĐ : \(x\ne0\)
b/ \(\frac{x-1}{\left(x+1\right)^2}.\frac{x^2+2x+1}{x^2-1}=\frac{x-1}{\left(x+1\right)^2}.\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{1}{x+1}\) với ĐKXĐ : \(x\ne\pm1\)
c/ \(\frac{x^2-7x+12}{x^2-16}=\frac{\left(x-4\right)\left(x-3\right)}{\left(x-4\right)\left(x+4\right)}=\frac{x-3}{x+4}\) với ĐKXĐ : \(x\ne\pm4\)
d/ \(\frac{x-1}{\sqrt{x}+1}:\left(\sqrt{x}-1\right)=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-1}=1\) với ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
P = \(\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}+\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
P = \(\frac{\sqrt{x}-4x-1+4x}{1-4x}:\left(\frac{1+2x-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)
P = \(\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{1+2x-4x-2\sqrt{x}-1+4x}\)
P = \(\frac{\sqrt{x}-1}{2x-2\sqrt{x}}\)
P = \(\frac{\sqrt{x}-1}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)
Rút gọn P
đk: \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
Ta có:
\(P=\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right)\div\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
\(P=\frac{\sqrt{x}-1+\sqrt{x}}{\left(1-\sqrt{x}\right)\sqrt{x}}\div\frac{\left(2x+\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x+\sqrt{x}-1\right)\left(\sqrt{x}-x\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)
\(P=\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\sqrt{x}}\cdot\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{2x+\sqrt{x}-1}\)
\(P=\frac{\left(2\sqrt{x}-1\right)\left(1+\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(1+\sqrt{x}\right)\sqrt{x}}\)
\(P=\frac{x-\sqrt{x}+1}{\sqrt{x}}=\frac{x\sqrt{x}-x+\sqrt{x}}{x}\)