Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\left(\frac{2}{1+2\sqrt{x}}-\frac{5\sqrt{x}}{4x-1}-\frac{1}{1-2\sqrt{x}}\right):\frac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
\(=1-\left(\frac{2\left(1-2\sqrt{x}\right)+5\sqrt{x}-1-2\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(1-2\sqrt{x}\right)}\right):\frac{\sqrt{x}-1}{\left(1+2\sqrt{x}\right)^2}\)
\(=1-\frac{1-\sqrt{x}}{\left(1+2\sqrt{x}\right)\left(1-2\sqrt{x}\right)}.\frac{\left(1+2\sqrt{x}\right)^2}{\sqrt{x}-1}=1-\frac{1+2\sqrt{x}}{1-2\sqrt{x}}=2-\frac{2}{1-2\sqrt{x}}\)
để A là số nguyên thì \(1-2\sqrt{x}\) là ước của 2 khi đó ta tìm được \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
ĐK \(\hept{\begin{cases}x\ge0\\x\ne4;x\ne9\end{cases}}\)
a. P=\(\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right):\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2+\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}+2+x-9-x+4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}=\frac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
b. Với \(x=4-2\sqrt{3}\Rightarrow P=\frac{\sqrt{4-2\sqrt{3}}+1}{4-2\sqrt{3}-4}=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+1}{-2\sqrt{3}}\)
\(=\frac{\sqrt{3}-1+1}{-2\sqrt{3}}=-\frac{1}{2}\)
c. Để \(\frac{1}{P}\le\frac{-5}{2}\Leftrightarrow\frac{x-4}{\sqrt{x}+1}+\frac{5}{2}\le0\Leftrightarrow\frac{2x-8+5\sqrt{x}+5}{2\left(\sqrt{x}+1\right)}\le0\)
\(\Leftrightarrow\frac{2x+5\sqrt{x}-3}{2\left(\sqrt{x}+1\right)}\le0\Leftrightarrow2x+5\sqrt{x}-3\le0\)vì \(2\left(\sqrt{x}+1\right)\ge0\forall x\ge0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(2\sqrt{x}-1\right)\le0\Leftrightarrow2\sqrt{x}-1\le0\Leftrightarrow0\le x\le\frac{1}{4}\left(tm\right)\)
Vậy với \(0\le x\le\frac{1}{4}\)thì \(\frac{1}{P}\le-\frac{5}{2}\)
d. Ta có \(B=P\left(\sqrt{x}-2\right)=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+2}=1-\frac{1}{\sqrt{x}+2}\)
Gỉa sử \(B\in Z\Leftrightarrow\sqrt{x}+2\inƯ\left(1\right)\Leftrightarrow\sqrt{x}+2\in\left\{-1;1\right\}\Leftrightarrow x\in\left\{\phi\right\}\)
Vậy B không nhận giá trị nguyên với mọi x để P có nghĩa