Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Để A là phân số thì \(2n-1\ne0\Rightarrow n\ne\frac{1}{2}\)
b
A là số nguyên thì \(\frac{2n+4}{2n-1}=\frac{2n-1+5}{2n-1}=1+\frac{5}{2n+1}\inℤ\)
\(\Rightarrow\frac{5}{2n-1}\inℤ\)
\(\Rightarrow2n-1\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{1;6;0;-2\right\}\)
c
\(A=\frac{1}{2}\Rightarrow\frac{2n+4}{2n-1}=\frac{1}{2}\Rightarrow4n+8=2n-1\Rightarrow2n+9=0\Rightarrow n=\frac{9}{2}\)
a) \(P=\frac{n^2+n+n+1-5}{n+1}=\frac{n\left(n+1\right)+\left(n+1\right)-5}{n+1}\)
\(P=n+1+\frac{-5}{n+1}\)
\(P\in Z< =>n+1\inƯ\left(-5\right)\)
n+1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Vậy \(P\in Z< =>x\in\left\{-6;-2;0;4\right\}\)
b khác 0 . Chia cả tử và mẫu của A cho b ta được
\(A=\frac{2015.\frac{a}{b}+1}{2015.\frac{a}{b}-1}\). Đặt a/b = y. y \(\le1\) vì a \(\le b\)
=> \(A=\frac{2015.y+1}{2015.y-1}=\frac{2015y-1+2}{2015y-1}=1+\frac{2}{2015y-1}\)
Vì y \(\le1\) => 2015y -1 \(\le\) 2014 => \(\frac{2}{2015y-1}\ge\frac{2}{2014}=\frac{1}{1007}\Rightarrow A\ge1+\frac{1}{1007}=\frac{1008}{1007}\)
Vậy A nhỏ nhất bằng 1008/1007 khi y = 1 => a /b = 1 => a = b
P nhỏ nhất khi x2+3x+10 lớn nhất
Ta có: \(x^2+3x+10=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\)không có GTLN
=> P không có GTNN
P lớn nhất khi x2+3x+10 nhỏ nhất
<=> \(\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\text{ nhỏ nhất}\left(=\frac{31}{4}\right)\)
<=> x + 3/2 = 0
<=> x = -3/2
=> GTLN của P là -20/31 <=> x=-3/2