K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2021

Ta có : \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2020}=1-\dfrac{1}{2020}=\dfrac{2019}{2020}\)

mà \(2019< 2020\)nên P < 1 ( đpcm ) 

28 tháng 4 2021

\(P=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2019.2021}\) 

\(P=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\) 

\(P=1-\dfrac{1}{2021}\) 

\(P=\dfrac{2020}{2021}\)

Vì \(\dfrac{2020}{2021}< 1\) ⇒ \(P< 1\) ( điều phải chứng minh ) 

11 tháng 7 2017

\(A=\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}+\dfrac{4^2}{3.5}+\dfrac{5^2}{4.6}+\dfrac{6^2}{5.7}\)

\(A=\dfrac{2.2.3.3.4.4.5.5.6.6}{1.3.2.4.3.5.4.6.5.7}\)

\(A=\dfrac{2.3.4.5.6}{1.2.3.4.5}.\dfrac{2.3.4.5.6}{3.4.5.6.7}\)

\(A=\dfrac{6}{1}.\dfrac{2}{7}=\dfrac{12}{7}\)

\(B=\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)\left(1+\dfrac{1}{9.11}\right)\)

\(B=\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{100}{99}\)

\(B=\dfrac{4.9.16.100}{3.8.15.99}\)

\(B=\dfrac{2.2.3.3.4.4.10.10}{1.3.2.4.3.5.9.11}\)

\(B=\dfrac{2.3.4.10}{1.2.3.9}.\dfrac{2.3.4.10}{3.4.5.11}\)

\(B=10.\dfrac{2}{11}=\dfrac{20}{11}\)

31 tháng 3 2017

Trả lời

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)

=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)

=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)

= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)

=\(2.\dfrac{100}{101}\)

=\(\dfrac{200}{101}\)

31 tháng 3 2017

Hình như phần b bạn chép đề sai hay sao đấy

3 tháng 3 2017

2/ = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) +......+\(\dfrac{1}{100.101}\)

= 1-\(\dfrac{1}{2}\) +\(\dfrac{1}{2}\) -\(\dfrac{1}{3}\)+.........+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\)

=1-\(\dfrac{1}{101}\)=...........

mk làm vậy thôi nha

thông cảm

leuleuyeu

2 tháng 3 2017

=\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{4.5}\)=\(1-\dfrac{1}{2}+....+\dfrac{1}{4}-\dfrac{1}{5}\)

=1-\(\dfrac{1}{5}=\dfrac{4}{5}\)

tương tự

6 tháng 5 2018

A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)

=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)

=2.(1-1/101)

=2.(101/101-1/101)

=2.100/101

200/101

6 tháng 5 2018

B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)

=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)

=2.(1/1+1/101)

=2.(101/101+1/101)

=2.102/101

=204/101

8 tháng 8 2018

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2019.2021}\)

= \(2.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2019.2021}\right)\)

= \(1.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{2019.2021}\right)\)

= \(1.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2019}-\dfrac{1}{2021}\right)\)

= \(1.\left(1-\dfrac{1}{2021}\right)\)

= \(1.\dfrac{2020}{2021}\)

= \(\dfrac{2020}{2021}\)

8 tháng 8 2018

làm cho mn câu b đikhocroi

6 tháng 4 2018

Ta có :

\(\dfrac{1}{2}\)(\(\dfrac{1}{1}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{7}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+2}\))=\(\dfrac{20}{41}\)

\(\dfrac{1}{2}\)(\(\dfrac{1}{3}\)-\(\dfrac{1}{x+2}\))=\(\dfrac{20}{41}\)

\(\dfrac{1}{3}\)-\(\dfrac{1}{x+2}\)=\(\dfrac{40}{41}\)

\(\dfrac{1}{x+2}\)=\(\dfrac{1}{3}\)-\(\dfrac{40}{41}\)

6 tháng 4 2018

1/3-1/1+1/7-1/5+1/9-1/7...

23 tháng 5 2017

\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)

\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)

23 tháng 5 2017

\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

a: \(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{201}-\dfrac{1}{203}=\dfrac{202}{203}\)

b: \(=-4\left(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{2015\cdot2018}\right)\)

\(=-\dfrac{4}{3}\cdot\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{2015\cdot2018}\right)\)

\(=\dfrac{-4}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{2015}-\dfrac{1}{2018}\right)\)

\(=\dfrac{-4}{3}\cdot\dfrac{504}{1009}=-\dfrac{672}{1009}\)

24 tháng 4 2017

cho minh xin yeu cau de bai

26 tháng 4 2017

trả hiểu yêu cầu đề bài là j cả