\(\overrightarrow{a},\overrightarrow{b}\ne0\)

CMR : \(\l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

giả sử tam giác ABC \(\overrightarrow{BC}\)=\(\overrightarrow{a}\) \(\overrightarrow{AC}\)= \(\overrightarrow{b}\) \(\overrightarrow{AB}\)=\(\overrightarrow{c}\)

theo đề ta có

BC-AC< AB < BC+AC

14 tháng 7 2019

b) \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\) khi vectơ a và vectơ b cùng hướng

18 tháng 7 2019

Chương 1: VEC TƠ

17 tháng 7 2019

Bài này sử dụng bất đẳng thức tam giác

Đặt vectơ AB = a vectơ BC = b

Ta có: \(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\) hay \(\left|\overrightarrow{a}+\overrightarrow{b}\right|=\overrightarrow{AC}\)

Ta lại có: \(AB+BC\ge AC\) ( bđt tam giác )

Từ 2 điều trên ta suy ra đpcm \(\left|\overrightarrow{a}+\overrightarrow{b}\right|\le\left|\overrightarrow{a}\right|+\left|\overrightarrow{b}\right|\)

31 tháng 3 2017

Giải bài 4 trang 27 sgk Hình học 10 | Để học tốt Toán 10

N
23 tháng 7 2017

a) đẳng thức xảy ra khi véc tơ a và véc tơ b cùng hướng.

b) đẳng thức xảy ra khi hai véc tơ a và b vuông góc với nhau

19 tháng 5 2017

\(\left(\overrightarrow{a}+\overrightarrow{b}\right)^2=\left(\overrightarrow{a}+\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2+2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)^2=\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}-\overrightarrow{b}\right)\)\(=\left|\overrightarrow{a}\right|^2+\left|\overrightarrow{b}\right|^2-2\overrightarrow{a}\overrightarrow{b}\).
\(\left(\overrightarrow{a}-\overrightarrow{b}\right)\left(\overrightarrow{a}+\overrightarrow{b}\right)=\left|\overrightarrow{a}\right|^2+\overrightarrow{a}\overrightarrow{b}-\overrightarrow{a}\overrightarrow{b}+\left|\overrightarrow{b}\right|^2\)\(=\left|\overrightarrow{a}\right|^2-\left|\overrightarrow{b}\right|^2\).