Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)
Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)
\(=k\left(k+1\right)+1\left(k+1\right)\)
\(=k^2+k+k+1=k^2+2k+1\)
Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)
\(\Rightarrow k^2+2k>k^2\)
Ta có : \(k^2< k^2+2k< k^2+2k+1\)
hay : \(k^2< k^2+2k< \left(k+1\right)^2\)
Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp
\(\Rightarrow k^2+2k\)không phải là số chính phương
3n+2 - 2n+2 +3n - 2n = 3n . 32 - 2n. 22 +3n -2n
= 3n(32+1) - (2n.22 +2n)
=3n . 10 - 2n .5
=3n.10 - 2n-1 .2 .5
= 3n.10 - 2n-1 .10
= 10(3n - 2n-1)
vì 10 chia hết cho 10 nên 10(3n-2n-1) chia hết cho 10
=> 3n+2 - 2n+2 +3n -2n chia hết cho 10
Ai làm nhanh nhất mình sẽ **** xin cảm ơn các bạn mình đang cần gấp
\(1/\)
Để \(\frac{21n+4}{14n+3}\)là phân số tối giản
Suy ra: ƯCLN\(\left(21n+4;14n+3\right)=1\)
Gọi ƯCLN\(\left(21n+4;14n+3\right)=a\)
Ta có:
\(21n+4⋮a\)
\(\Rightarrow\left(21n+4\right).2=42n+8⋮a\)(1)
\(14n+3⋮a\)
\(\Rightarrow\left(14n+3\right).3=42n+9⋮a\)(2)
Từ (1) và (2) suy ra:
\((42n+9)-(42n+8)⋮a\)
\(\Rightarrow1⋮a\)
\(\Rightarrow a\inƯ\left(1\right)\)
\(\Rightarrow a=1\)hoặc\(a=-1\)
\(a\inƯCLN\left(1\right)\)\(\Rightarrow a=1\)
Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản
a) Chỉ là thay số nên bạn tự làm nhé.
b) \(y_1=1\), \(y_2=f\left(y_1\right)=f\left(1\right)=1-\left|1\right|=0\), \(y_3=f\left(y_2\right)=f\left(0\right)=1-\left|0\right|=1\), cứ tiếp tục như vậy.
Dễ dàng nhận thấy rằng với \(k\)lẻ thì \(y_k=1\), \(k\)chẵn thì \(y_k=0\)(1).
Khi đó ta có:
\(A=y_1+y_2+...+y_{2021}\)
\(A=1+0+1+...+1\)
\(A=\frac{2021-1}{2}+1=1011\)
Bài làm :
Ta có :
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{\left(n+1\right)!}\)
\(=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{n}{1.2.3...\left(n+1\right)}\)
\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{n+1-1}{1.2.3...\left(n+1\right)}\)
\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4..n}-\frac{1}{1.2.3.4...\left(n+1\right)}\)
\(=1-\frac{1}{1.2.3.4...\left(n+1\right)}\)
\(\text{Vì : }\frac{1}{1.2.3.4...\left(n+1\right)}>0\Rightarrow1-\frac{1}{1.2.3.4...\left(n+1\right)}< 1\)
=> Điều phải chứng minh
Ta có : \(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{n}{\left(n+1\right)!}=\frac{1}{1.2}+\frac{2}{1.2.3}+\frac{3}{1.2.3.4}+...+\frac{n}{1.2.3...\left(n+1\right)}\)
\(=\frac{2-1}{1.2}+\frac{3-1}{1.2.3}+\frac{4-1}{1.2.3.4}+...+\frac{n+1-1}{1.2.3....\left(n+1\right)}\)
\(=1-\frac{1}{1.2}+\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{1.2.3}-\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3.4..n}-\frac{1}{1.2.3.4...\left(n+1\right)}\)
\(=1-\frac{1}{1.2.3.4...\left(n+1\right)}< 1\left(\text{đpcm}\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)
\(\Rightarrow\left(\frac{a_1}{a_2}\right)^n=\left(\frac{a_2}{a_3}\right)^n=....=\left(\frac{a_n}{a_{n+1}}\right)^n=\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)(1)
Ta có: \(\left(\frac{a_1}{a_2}\right)^n=\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}....\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_n}{a_{n+1}}=\frac{a_1}{a_{n+1}}\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n=\frac{a_1}{a_{n+1}}\)(đpcm)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau có:}\)
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)
\(\Rightarrow\left(\frac{a_1}{a_2}\right)^n=\left(\frac{a_2}{a_3}\right)^n=...=\left(\frac{a_n}{a_{n+1}}\right)^n\)\(=\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)
Mà\( \left(\frac{a_1}{a_2}\right)^n=\frac{a_1}{a_2}\cdot\frac{a_1}{a_2}\cdot...\cdot\frac{a_1}{a_2}\)\(=\frac{a_1}{a_2}\cdot\frac{a_2}{a_3}\cdot...\cdot\frac{a_n}{a_{n+1}}\)\(=\frac{a_1}{a_{n-1}}\)
\(\Rightarrow\)\(\left(\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\right)^n\)\(=\frac{a_1}{a_{n-1}}\)
a) \(\left[-\frac{1}{2}\left(a-1\right)x^3y^4z^2\right]^5=\frac{-\left(a-1\right)^5}{32}x^{15}y^{20}z^{10}\)
Hệ số: \(\frac{-\left(a-1\right)^5}{32}\). Bậc của đơn thức: \(15+20+10=45\)
b) \(\left(a^5b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)=-a^5b^5cx^5y^2z^6\)
Hệ số: \(-a^5b^5c\). Bậc của đơn thức: \(5+2+6=13\)
c) \(\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{125}{27}a^3x^{15}y^6z^3\right)\)\(=\frac{25}{6}a^6x^{17}y^7z^3\)
Hệ số: \(\frac{25}{6}a^6\). Bậc của đơn thức:\(17+7+3=27\)
\(\left|x+5\right|\le2\Rightarrow-2\le x+5\le2\)
\(\Rightarrow x+5\in\left\{-2;-1;0;1;2\right\}\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
\(\left(x^2-5\right)\left(x^2-10\right)\left(x^2-15\right)\left(x^2-20\right)< 0\)
Xét 2 trường hợp:
TH1:Trong 4 số có 3 số âm 1 số dương.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}}\Rightarrow\hept{\begin{cases}x^2>5\\x^2>10\end{cases}\Rightarrow}5< x^2< 10\Rightarrow x=3\left(h\right)x=-3\)
TH2:Trong 4 số có 3 số dương,1 số âm.
Theo bài ra,ta có:\(\hept{\begin{cases}x^2-20< 0\\x^2-15>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 20\\x^2>15\end{cases}}\Rightarrow15< x^2< 20\Rightarrow x=4\left(h\right)x=-4\)
Vậy \(x\in\left\{3;-3;4;-4\right\}\)
Tính ra A là 2-(1/2)^2013. Phần còn lại thì quá dễ r
(Để tính A từ dãy trên ta nhân 2 lên thành 2A. Rồi lấy 2A-A=A=...)
\(A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+..............+\left(\frac{1}{2}\right)^{2013}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+.......+\left(\frac{1}{2}\right)^{2013}\Rightarrow2A-A=A=2-\left(\frac{1}{2}\right)^{2013}\)
\(VI:A+\left(\frac{1}{2}\right)^n=2\Rightarrow n=2013\)
Đề sai thế n = 1 thì
\(\left(1-1\right)^2< 1< \left(1+1\right)^2\)
Giả sử n là số chính phương
vì: n là số nguyên >1 và \(\left(n-1\right)^2< n< \left(n+1\right)^2\)
nên: n=n^2.\(\Rightarrow n^2-n=0\Leftrightarrow n\left(n-1\right)=0\Leftrightarrow\orbr{\begin{cases}n-1=0\\n=0\end{cases}}\)
Mà: n>1 nên: n-1>0
và n>0 (vô lí) vậy n ko là số chính phương