K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

ta thấy : \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};\frac{1}{4^2}>\frac{1}{4.5};...;\frac{1}{199^2}>\frac{1}{199.200}\)

suy ra: \(M>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{199.200}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{2}-\frac{1}{200}\)

=\(\frac{100}{200}-\frac{1}{200}=\frac{99}{200}\)

=> \(M>\frac{99}{200}\)

ta cũng thấy: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{199^2}<\frac{1}{198.199}\)

suy ra:\(M<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{198.199}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{198}-\frac{1}{199}=\frac{1}{1}-\frac{1}{199}\)

=\(\frac{199}{199}-\frac{1}{199}=\frac{198}{199}\)

=>\(M<\frac{198}{199}\)

vậy \(\frac{99}{200}

i don't now

mong thông cảm !

...........................

8 tháng 6 2016

Câu3: Ký hiệu [a,b] và (a,b) là gì ? Bạn.

8 tháng 6 2016

Câu 1:

\(B=\frac{1}{199}+1+\frac{2}{198}+1+\frac{3}{197}+1+...+\frac{198}{2}+1+\frac{199}{1}+1-199\)

\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)

\(=200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)=200\cdot A\)

Vậy, \(\frac{A}{B}=\frac{1}{200}\).

9 tháng 3 2017

 \(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}}=\frac{1}{2000}\)

\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{200}}{\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+....+\left(\frac{198}{2}+1\right)+1}=\frac{1}{2000}\)

\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}{\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+....+\frac{200}{2}}=\frac{1}{2000}\)

\(\left(x-20\right)\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}}{200\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)}=\frac{1}{2000}\)

\(\left(x-20\right).\frac{1}{200}=\frac{1}{2000}\)

\(\left(x-20\right)=\frac{1}{2000}:\frac{1}{200}=\frac{1}{2000}.200=\frac{1}{10}\)

\(\Rightarrow x=\frac{1}{10}+20=\frac{201}{10}\)

27 tháng 5 2017

a, Ta có: \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+....+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)(đpcm)

b, Ta có: \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)(đpcm)

27 tháng 5 2017

a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...\)\(+\frac{99}{100}\)
Xét: \(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
    = \(\frac{2-1}{2}+\frac{3-1}{3}+\frac{4-1}{4}+...+\frac{100-1}{100}\)
    = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)                                                          
    = \(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)( có 99 số hạng là 1 )
    = \(99-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(\left(99+1\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
    = \(100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow100-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)\(=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)( đpcm )
Vậy: ... 

28 tháng 2 2017

Ta có \(k^2>k^2-1=\left(k+1\right)\left(k-1\right)\)

Áp dung vào bài toán ta được

\(A=\frac{1}{2}.\frac{3}{4}...\frac{199}{200}=\frac{1.3...199}{2.4...200}\)

\(\Rightarrow A^2=\frac{1^2.3^2...199^2}{2^2.4^2...200^2}< \frac{1^2.3^2...199^2}{1.3.3.5...199.201}=\frac{1^2.3^2...199^2}{1.3^2.5^2...199^2.201}=\frac{1}{201}\)

Vậy \(A^2< \frac{1}{201}\)

28 tháng 2 2017

A2<\(\frac{1}{201}\)

25 tháng 7 2016

Ta có : 

\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{198}{2}+\frac{199}{1}\)

\(B=\frac{1}{199}+\frac{2}{198}+...+\frac{198}{2}+199\)

\(B=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)

\(B=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}+1\)

\(B=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)

\(B=200.\left(\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)\)

\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}}{200.\left(\frac{1}{2}+...+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)}=\frac{1}{200}\)

Ủng hộ mk nha !!! ^_^

\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+\frac{199}{1}\)

\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(199-1-1-1-...1\right)\)(198 chữ số 1)

\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+1=200.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{197}+\frac{1}{198}+\frac{1}{199}+\frac{1}{200}\right)=200.A\)

\(\Rightarrow\frac{A}{B}=\frac{A}{200.A}=\frac{1}{200}\)

5 tháng 3 2020

làm luôn đi bạn mình đang cần vội