K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2017

Ta có:

\(\left(x+y+z\right)\left(xy+yz+zx\right)=xyz\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y;y=-z;z=-x\)

Với \(x=-y\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}=z^{2017}=\left(x+y+z\right)^{2017}\)

Tương tự cho 2 trường hợp còn lại

\(x+y+z=0\)

\(\Leftrightarrow\left(x+y+z\right)^2=0\)

\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2=0\)

\(\Leftrightarrow x=y=z=0\)

\(\Leftrightarrow Q=-1+\left(-1\right)+\left(-1\right)=-3\)

6 tháng 9 2018

Ta có :

\(VT=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)

\(=\left(xy+y^2+xz+yz\right)\left(z+x\right)+xyz\)

\(=xyz+y^2z+xz^2+yz^2+x^2y+y^2x+x^2z+xyz+xyz\)

\(=\left(x^2y+xyz+x^2z\right)+\left(y^2x+y^2z+xyz\right)+\left(xyz+z^2y+z^2x\right)\)\(=x\left(xy+yz+zx\right)+y\left(xy+yz+zx\right)+z\left(xy+yz+zx\right)\)

\(=\left(x+y+z\right)\left(xy+yz+zx\right)=VP\)

\(\left(đpcm\right)\)

:D

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Ta có: \(x^2+y^2+z^2=xy+yz+xz\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz=0\)

\(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

\((x-y)^2; (y-z)^2;(z-x)^2\geq 0\), do đó để tổng của chúng bằng $0$ thì:

\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)

\(\Rightarrow 3x^{2017}=3y^{2017}=3z^{2017}=x^{2017}+y^{2017}+z^{2017}=9\)

\(\Rightarrow x=y=z=\sqrt[2017]{3}\)

\(\Rightarrow \left(\frac{2017x+2018y-4023z}{3}\right)^{2017}=\left(\frac{12x}{3}\right)^{2017}=(4x)^{2017}=3.4^{2017}\)

16 tháng 11 2018

Em cảm ơn cô chúc cô ngày nhà giáo vui vẻ

8 tháng 12 2017

2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)

<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)

<=> (ab+bc+ca)(a+b+c)=abc

<=> (ab+bc+ca)(a+b+c)-abc=0

<=> (a+b)(b+c)(c+a) = 0

<=> a+b=0 hoặc b+c=0 hoặc c+a=0

<=> a=-b hoặc b=-c hoặc c = -a

sau đó thay vào cái cần c/m

8 tháng 12 2017

bài 1 nhá

22 tháng 12 2017

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath

23 tháng 12 2017

Còn bài số 2 thì sao cô??