Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n=\frac{\left(127+24\sqrt{28}\right)^k-\left(127-24\sqrt{28}\right)^k}{2\sqrt{28}}\)
k thuộc N*
câu 2
Ta có: P(0)=d =>d chia hết cho 5 (1) P(1)=a+b+c+d =>a+b+c chia hết cho 5 (2) P(-1)=-a+b-c+d chia hết cho 5 Cộng (1) với (2) ta có: 2b+2d chia hết cho 5 Mà d chia hết cho 5 =>2d chia hết cho 5 =>2b chia hết cho 5 =>b chia hết cho 5 P(2)=8a+4b+2c+d chia hết cho 5 =>8a+2c chia hết cho 5 ( vì 4b+d chia hết cho 5) =>6a+2a+2c chia hết cho 5 =>6a+2(a+c) chia hết cho 5 Mà a+c chia hết cho 5 (vì a+b+c chia hết cho 5, b chia hết cho 5) =>6a chia hết cho 5 =>a chia hết cho 5 =>c chia hết cho 5 Vậy a,b,c chia hết cho 5 cho mình 1tk nhé
1b)
Đặt 2014+n2=m2(m∈Z∈Z,m>n)
<=>m2-n2=2014<=>(m+n)(m-n)=2014
Nhận thấy:m và n phải cùng chẵn hoặc cùng lẻ
Suy ra m+n và m-n đều chẵn,m+n>m-n
Mà 2014=2.19.53=>m+n và m-n không cùng chẵn
=>không có giá trị nào thoả mãn
tk mình nhé
bon so lien tiep chia het cho 8
A=8k+3
so chinh phuong le chi co dang 8k+1
A ko cp
\(\sqrt{28n^2+1}=k\)
\(A=2k+2=4\left(\frac{k+1}{2}\right)\)
\(k^2=28n^2+1\)
\(k^2-1=28n^2\)
\(\frac{k^2-1}{28}=n^2\)
Suy ra\(k^2-1\)chia hết cho 7 vì tử nguyên mẫu nguyên mà thương cũng nguyên nên tử chia hết cho mẫu mà 28 chia hết cho 7
\(k^2\equiv1\left(mod7\right)\)
\(k\equiv1\)(mod7)
k-1 chia hết cho 7
Có \(n^2=\frac{k^2-1}{28}=\left(\frac{k-1}{14}\right)\left(\frac{k+1}{2}\right)\)
2 số trên nguyên tố cùng nhau
mà tích là số chính phương nên 2 số trên đều là số chính phương
(k+1)/2 chính phương
\(A=4\left(\frac{k+1}{2}\right)\)tích 2 số cp nên a cp
Do \(n\in N^{\text{*}}\) \(\left(o\right)\) nên ta dễ dàng suy ra \(2+2\sqrt{28n^2+1}\in Z^+\)
Do đó, \(2\sqrt{28n^2+1}\in Z^+\) dẫn đến \(\sqrt{28n^2+1}\in Q\)
Lại có: \(28n^2+1\) luôn là một số nguyên dương (do \(\left(o\right)\)) nên \(\sqrt{28n^2+1}\in Z^+\)
hay nói cách khác, ta đặt \(\sqrt{28n^2+1}=m\) (với \(m\in Z^+\) )
\(\Rightarrow\) \(28n^2+1=m^2\) \(\left(\alpha\right)\)
\(\Rightarrow\) \(m^2-1=28n^2\) chia hết cho \(4\)
Suy ra \(m^2\text{ ≡ }1\) \(\left(\text{mod 4}\right)\)
Hay \(m\) phải là một số lẻ có dạng \(m=2k+1\) \(\left(k\in Z^+\right)\)
Từ \(\left(\alpha\right)\) suy ra \(28n^2=\left(2k+1\right)^2-1=4k\left(k+1\right)\)
nên \(7n^2=k\left(k+1\right)\)
Theo đó, ta có: \(\orbr{\begin{cases}k\\k+1\end{cases}\text{chia hết cho 7}}\)
Xét hai trường hợp sau:
\(\text{Trường hợp 1}:\)\(k=7q\) \(\left(q\in Z^+\right)\)
Suy ra \(7n^2=7q\left(7q+1\right)\)
\(\Rightarrow\) \(n^2=q\left(7q+1\right)\) \(\left(\beta\right)\)
Mặt khác, vì \(\left(q,7q+1\right)=1\) nên từ \(\left(\beta\right)\) suy ra \(\hept{\begin{cases}q=a^2\\7q+1=b^2\end{cases}\Rightarrow}\) \(7a^2+1=b^2\) \(\left(\gamma\right)\)
Tóm tại tất cả điều trên, ta có:
\(A=2+2\sqrt{28n^2+1}=2+2m=2+2\left(2k+1\right)=4+4.7q=4+28q\)
Khi đó, \(A=4+28a^2=4\left(7a^2+1\right)=4b^2\) (do \(\left(\gamma\right)\) )
Vậy, \(A\) là số chính phương với tất cả các điều kiện nêu trên
\(\text{Trường hợp 2:}\)\(k+1=7q\)
Tương tự