Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a+b+c=0\(\Rightarrow\)\(\left(a+b+c\right)^2=0\)\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)\(\Rightarrow a^2+b^2+c^2=0\).Mặt khác ta có :\(a^2\ge0\forall a;b^2\ge0\forall b;c^2\ge0\forall c\)\(\Rightarrow a=b=c=0\)\(\Rightarrow\)\(M=\left(a-2005\right)^{2006}+\left(b-2005\right)^{2006}+\left(c-2005\right)^{2006}\)=\(\left(-2005\right)^{2006}+\left(-2005\right)^{2006}+\left(-2005\right)^{2006}\)=\(3.2005^{2006}\)
2)
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-cb-ac\right)\)
\(\Rightarrow a+b+c=0\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\a+c=-b\end{matrix}\right.\)
\(\Rightarrow N=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\)
\(\Rightarrow N=\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{a+c}{a}\)
\(\Rightarrow N=\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\)
\(\Rightarrow N=-1\)
Bài 1:
Thay 2006 = abc vào biểu thức A ,có :
\(\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{abc^2}{ac+abc^2+abc}\)
\(=\dfrac{a}{a+ab+abc}+\dfrac{ab}{a\left(1+b+bc\right)}+\dfrac{c.abc}{c\left(a+ab+abc\right)}\)
\(=\dfrac{a}{a+ab+abc}+\dfrac{ab}{a+ab+abc}+\dfrac{abc}{a+ab+abc}\)
\(=\dfrac{a+ab+abc}{a+ab+abc}=1\)
Vậy tại abc = 2006 giá trị biểu thức A là 1
Sửa đề \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Ta có: \(a^3+b^3+c^3=3ab\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
TH1: a+b+c=0
=> \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}}\)
Thay vào M ta được M=\(\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)
\(\Rightarrow M=\frac{-c}{b}\cdot\frac{-a}{c}\cdot\frac{-b}{a}=-1\)
TH2: \(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow M=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Đúng là câu b sai, nhầm dấu đoạn đầu, phải là \(\frac{2006.2006-\left(2005.2006+2005\right)}{2006.\left(2007-2005\right)}\)
Phá ngoặc thì thành trừ nhưng cô của em bạn lại sót=> sai luôn cả tính chất bài toán.
P/s: Thử lại bằng casio là thấy rõ bạn đúng.
Tư tưởng bảo thủ của bọn trẻ con và niềm tin mù quáng vào thầy cô đó bạn ^^
TA CÓ A= \(\left(\frac{2006-2005}{2006+2005}\right)^2\)=\(\frac{1}{4011^2}\)
B=\(\frac{2006^2-2005^2}{2006^2+2005^2}\) = \(\frac{\left(2006-2005\right)\left(2006+2005\right)}{\left(2006+2005\right)^2-2.2005.2006}\) = \(\frac{4011}{4011^2-2.2006.2005}\)
VÌ 1.(\(4011^2\)-2.200.2005)<\(4011^2\).4011 (DO \(4011^2\)>\(4011^2\)-2.2006.2005)
\(\Rightarrow\)\(\frac{1}{4011^2}\)< \(\frac{4011}{4011^2-2.2005.2006}\) .HAY A<B
VẬY A<B
Ta có:
\(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\)
Dễ thấy \(\left\{{}\begin{matrix}\sqrt{a^2+2006}-a\ne0\\\sqrt{b^2+2006}-b\ne0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a+\sqrt{a^2+2006}\right)\left(\sqrt{a^2+2006}-a\right)\left(b+\sqrt{b^2+2006}\right)=2006\left(\sqrt{a^2+2006}-a\right)\\\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)\left(\sqrt{b^2+2006}-b\right)=2006\left(\sqrt{b^2+2006}-b\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2006\left(b+\sqrt{b^2+2006}\right)=2006\left(\sqrt{a^2+2006}-a\right)\\2006\left(a+\sqrt{a^2+2006}\right)=2006\left(\sqrt{b^2+2006}-b\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+\sqrt{b^2+2006}=\sqrt{a^2+2006}-a\\a+\sqrt{a^2+2006}=\sqrt{b^2+2006}-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=\sqrt{a^2+2006}-\sqrt{b^2+2006}\left(1\right)\\a+b=\sqrt{b^2+2006}-\sqrt{a^2+2006}\left(2\right)\end{matrix}\right.\)
Lấy (1) + (2) ta được
\(a+b=0\)
Ta có : \(\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)=2006\) (*)
Nhân liên hợp ta được :
(*)\(\Leftrightarrow\dfrac{\left(a+\sqrt{a^2+2006}\right)\left(a-\sqrt{a^2+2006}\right)}{a-\sqrt{a^2+2006}}.\)\(\dfrac{\left(b+\sqrt{b^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}{b-\sqrt{b^2-2006}}=2006\)
\(\Leftrightarrow\dfrac{a^2-a^2-2006}{a-\sqrt{a^2+2006}}.\dfrac{b^2-b-2006}{b-\sqrt{b^2+2006}}=2006\)
\(\Leftrightarrow\left(-2006\right).\left(-2006\right)\dfrac{1}{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}=2006\)
\(\Leftrightarrow\)\(\Leftrightarrow\dfrac{1}{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}=\dfrac{1}{2006}\)
=> \(\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)=2006\) (**)
Từ (*) và (**) ta suy ra :
\(\dfrac{\left(a-\sqrt{a^2+2006}\right)\left(b-\sqrt{b^2+2006}\right)}{\left(a+\sqrt{a^2+2006}\right)\left(b+\sqrt{b^2+2006}\right)}=1\)
Và \(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{b+\sqrt{b^2+2006}}{b-\sqrt{b^2+2006}}\)
=> \(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{b+\sqrt{b^2+2006}}{b-\sqrt{b^2+2006}}=\dfrac{1}{2}\)
+ , \(\dfrac{a-\sqrt{a^2+2006}}{a+\sqrt{a^2+2006}}=\dfrac{1}{2}\Rightarrow2a-2\sqrt{a^2+2006}=a+\sqrt{a^2+2006}\Rightarrow a=3\sqrt{a^2+2006}\)
Tương tự : b = \(3\sqrt{b^2+2006}\)
=> a+b = \(3\left(\sqrt{a^2+2006}+\sqrt{b^2+2006}\right)\)
========================
không biết hướng làm này có đúng không nữa ... tại còn dính ẩn ...