K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\left(đpcm\right)\)

1 tháng 11 2016

 

\(\frac{a}{b}\) =\(\frac{c}{d}\) =>\(\frac{a}{c}\) =\(\frac{b}{d}\) =\(\frac{a-b}{c-d}\) =>\(\frac{ab}{cd}\) = \(\frac{a}{c}\) x\(\frac{b}{d}\) = \(\frac{a-b}{c-d}\) x \(\frac{a-b}{c-d}\) = \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

Còn với\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) thì bạn chỉ cần thay dấu trừ thành dấu công là được

Chúc bạn học tốtleuleu

1 tháng 10 2017

1, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)

2, a, Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{ab}{cd}\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{b}{d}\cdot\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{b^2}{d^2}\)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)

b, Ta có: \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a}{c}\cdot\frac{b}{d}=\frac{a-b}{c-d}\cdot\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)

20 tháng 10 2016

Cho \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k;c=d.k\)

Vế trái:

\(\frac{a}{b}=\frac{c}{d}=\frac{b.k.b}{d.k.d}=\frac{b^2}{d^2}\)(1)

Vế phải:

\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left(bk+b\right).2}{d^2.\left(k+1\right)^2}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) ta có:

\(\frac{ab}{c\text{d}}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(đpcm)

 

20 tháng 10 2016

ta có \(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+d}\\\Rightarrow\frac{a}{c}.\frac{a}{c}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\\ \Rightarrow\frac{a}{c}.\frac{b}{d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}hay\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2} \)

29 tháng 5 2017

Giải:

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\)

a, Ta có: \(k^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)  (1)

\(k^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)  (2)

Từ (1), (2) \(\Rightarrowđpcm\)

b, Ta có: \(k=\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

\(\Rightarrow k^2=\left(\frac{a-b}{c-d}\right)^2=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)  (1)

\(k^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)  (2)

Từ (1), (2) \(\Rightarrowđpcm\)

29 tháng 5 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

     a)Thay vào \(\frac{a^2-b^2}{c^2-d^2}\) ta được:

\(\Rightarrow\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{b^2k^2-b^2}{d^2k^2-d^2}\Rightarrow\frac{b^2}{d^2}\Rightarrow\frac{b.b}{d.d}\left(1\right)\)

                Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow a=b;c=d\left(2\right)\)

                           Từ (1) và (2) suy ra:\(\frac{a^2-b^2}{c^2-d^2}=\frac{ab}{cd}\)

3 tháng 10 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=b.k,c=d.k\)

a) Ta có:

\(\frac{a}{3a+b}=\frac{b.k}{3.b.k+b}=\frac{b.k}{b\left(3k+1\right)}=\frac{k}{3k+1}\) (1)

\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\) (2)

Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{c}{3c+d}\)

b) Ta có:

\(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{\left(bk-b\right)^2}{\left(dk-d\right)^2}=\frac{\left[b\left(k-1\right)\right]^2}{\left[d\left(k-1\right)\right]^2}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{ab}{cd}\)

7 tháng 3 2018

Ta có: \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Lại có: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)

Tương tự: \(\frac{a^2+b^2}{c^2+d^2}=\frac{k^2b^2+b^2}{k^2d^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\)

=> đpcm

7 tháng 3 2018

Mình sẽ k cho người đúng và nhanh nhất!

1 tháng 6 2016

Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)=k=> a=bk; c=dk

vế trái =\(\frac{ab}{cd}\)=\(\frac{bk.b}{dk.d}\)=\(\frac{b^2}{d^2}\)(1)

vế phải =\(\frac{\left(a+b\right)2}{\left(c+d\right)^2}\)=\(\frac{\left(bk+b\right)2}{\left(dk+d\right)^2}\)=\(\frac{b^2\left(k+1\right)2}{d^2\left(k+1\right)^2}\)=\(\frac{b^2}{d^2}\)(2)

Từ (1) và (2) ta có:\(\frac{ab}{cd}\)=\(\frac{\left(a+b\right)2}{\left(c+d\right)^2}\)

1 tháng 6 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

 

 

26 tháng 7 2016

a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{ab}{cd}=\frac{a.a}{c.c}=\frac{b.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{ab}{cd}=\frac{a}{c}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)