K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\) =>\(a=bk\); \(c=dk\)

Thay \(a=bk\);\(c=dk\)vào biểu thức \(\frac{ac}{bd}\)ta được:

\(\frac{ac}{bd}=\frac{bk.dk}{bd}=\frac{k^2bd}{bd}=k^2\left(1\right)\)

Thay \(a=bk\); \(c=dk\)vào biểu thức \(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015\left(bk\right)^2+2016\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015b^2k^2+2016d^2k^2}{2015b^2+2016d^2}=\frac{k^2\left(2015b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\)

Từ (1)(2)

=>\(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)

18 tháng 10 2016

Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

a) Ta có: \(\left(\frac{a+b}{c+d}\right)^3=\left(\frac{bk+b}{dk+d}\right)^3=\left[\frac{b.\left(k+1\right)}{d.\left(k+1\right)}\right]^3=\left(\frac{b}{d}\right)^3\) (1)

\(\frac{a^3-b^3}{c^3-d^3}=\frac{\left(bk\right)^3-b^3}{\left(dk\right)^3-d^3}=\frac{b^3.k^3-b^3}{d^3.k^3-d^3}=\frac{b^3.\left(k^3-1\right)}{d^3.\left(k^3-1\right)}=\frac{b^3}{d^3}=\left(\frac{b}{d}\right)^3\) (2)

Từ (1) và (2) suy ra \(\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\)

b) Ta có:

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{2015a^2+2016c^2}{2015b^2+2016d^2}=\frac{2015.\left(bk\right)^2+2016.\left(dk\right)^2}{2015b^2+2016d^2}=\frac{2015.b^2.k^2+2016.d^2.k^2}{2015.b^2+2016.d^2}=\frac{k^2.\left(2015.b^2+2016d^2\right)}{2015b^2+2016d^2}=k^2\left(2\right)\) Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{2015a^2+2016c^2}{2015b^2+2016d^2}\)

 

 

20 tháng 10 2019

Đề bài phải thêm là \(\frac{a}{b}=\frac{c}{d}\) nhé.

a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{2015a}{2015c}=\frac{2016b}{2016d}.\)

\(\Rightarrow\frac{2016a}{2016c}=\frac{2017b}{2017d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2015a-2016b}{2015c-2016d}\) (1)

\(\frac{a}{c}=\frac{2016a}{2016c}=\frac{2017b}{2017d}=\frac{2016a+2017b}{2016c+2017d}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}.\)

\(\Rightarrow\frac{2015a-2016b}{2016c+2017b}=\frac{2015c-2016d}{2016c+2017d}\left(đpcm\right).\)

Câu a) mình nghĩ phải chứng minh như thế.

Chúc bạn học tốt!


20 tháng 10 2019

mk vt thiếu \(\frac{a}{b}=\frac{c}{d}\)

5 tháng 9 2015

tỉ lệ thức cần chứng minh <=> chứng minh: \(\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}\)

Vì \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\) = \(\frac{2015a}{2015c}=\frac{2016b}{2016d}=\frac{2016a}{2016c}=\frac{2017b}{2017d}\)

Áp dụng t/c của dãy tỉ số bằng nhau ta có: 

\(\frac{a}{c}=\frac{2015a-2016b}{2015c-2016d}=\frac{2016a+2017b}{2016c+2017d}\) => đpcm

21 tháng 2 2019

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}.Đặt:a=ck;b=dk\)

\(\Rightarrow\frac{a^2+ac}{c^2-ac}=\frac{c^2k^2+c^2k}{c^2-kc^2}=\frac{c^2\left(k^2+k\right)}{c^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\frac{b^2+bd}{d^2-bd}=\frac{d^2k^2+kd^2}{d^2-kd^2}=\frac{d^2\left(k^2+k\right)}{d^2\left(1-k\right)}=\frac{k^2+k}{1-k}\)

\(\Rightarrow\frac{b^2+bd}{d^2-bd}=\frac{a^2+ac}{c^2-ac}\left(\text{đpcm}\right)\)

21 tháng 2 2019

Ta có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

 \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\Leftrightarrow ad\left(a+c\right)\left(d-b\right)=bc\left(b+d\right)\left(c-a\right)\)

Rút gọn ad với bc \(\Rightarrow\left(a+c\right)\left(d-b\right)=\left(b+d\right)\left(c-a\right)\)

\(\Leftrightarrow ad+cd-ab-bc=bc+cd-ab-ad\)

Rút gọn 2 vế ta đc 0=0 

vì 0=0 luôn đúng nên cái phương trình trên luôn đúng

24 tháng 11 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)\(\Rightarrow a=bk;c=dk\)

1)Xét \(VT=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)

Suy ra Đpcm

2)Xét \(VT=\frac{3\left(bk\right)^2+\left(dk\right)^2}{3b^2+d^2}=\frac{3b^2k^2+d^2k^2}{3b^2+d^2}=\frac{k^2\left(3b^2+d^2\right)}{3b^2+d^2}=k^2\left(1\right)\)

Xét \(VP=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\left(2\right)\)

Từ (1) và (2) suy ra Đpcm

 

17 tháng 9 2016

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)

\(VT=\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2k^2+bdk^2}{d^2k^2-bdk^2}=\frac{k^2\left(b^2+bd\right)}{k^2\left(d^2-bd\right)}=\frac{b^2+bd}{d^2-bd}=VP\)

=>Đpcm

17 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{a^2+ac}{c^2-ac}=\frac{\left(bk\right)^2+bkdk}{\left(dk\right)^2-bkdk}=\frac{b^2.k^2+b.d.k^2}{d^2.k^2-b.d.k^2}=\frac{b.k^2\left(b+d\right)}{d.k^2\left(d-b\right)}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\) (1)

\(\frac{b^2+bd}{d^2-bd}=\frac{b\left(b+d\right)}{d\left(d-b\right)}\) (2)

Từ (1) và (2) suy ra \(\frac{a^2+ac}{c^2-ac}=\frac{b^2+bd}{d^2-bd}\) ( đpcm )